Mechanisms of valence selectivity in biological ion channels

被引:68
作者
Corry, B [1 ]
Chung, SH
机构
[1] Univ Western Australia, Sch Biomed & Chem Sci, Crawley, WA 6009, Australia
[2] Australian Natl Univ, Res Sch Phys Sci, Dept Theoret Phys, Canberra, ACT 0200, Australia
关键词
ion channel; selectivity; permeation; Brownian dynamics; molecular dynamics; gramicidin; calcium channel; ClC; potassium channel;
D O I
10.1007/s00018-005-5405-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transmembrane ion channels play a crucial role in the existence of all living organisms. They partition the exterior from the interior of the cell, maintain the proper ionic gradient across the cell membrane and facilitate signaling between cells. To perform these functions, ion channels must be highly selective, allowing some types of ions to pass while blocking the passage of others. Here we review a number of studies that have helped to elucidate the mechanisms by which ion channels discriminate between ions of differing charge, focusing on four channel families as examples: gramicidin, ClC chloride, voltage-gated calcium and potassium channels. The recent availability of high-resolution structural data has meant that the specific inter-atomic interactions responsible for valence selectivity can be pinpointed. Not surprisingly, electrostatic considerations have been shown to play an important role in ion specificity, although many details of the origins of this discrimination remain to be determined.
引用
收藏
页码:301 / 315
页数:15
相关论文
共 151 条
[21]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[22]   NEGATIVE CONDUCTANCE CAUSED BY ENTRY OF SODIUM AND CESIUM IONS INTO POTASSIUM CHANNELS OF SQUID AXONS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1972, 60 (05) :588-+
[23]   Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations [J].
Biggin, PC ;
Smith, GR ;
Shrivastava, I ;
Choe, S ;
Sansom, MSP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2001, 1510 (1-2) :1-9
[24]   Monte Carlo simulations of the mechanism for channel selectivity: The competition between volume exclusion and charge neutrality [J].
Boda, D ;
Busath, DD ;
Henderson, D ;
Sokolowski, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (37) :8903-8910
[25]  
BUSATH DD, 1993, ANNU REV PHYSIOL, V55, P473
[26]   Noncontact dipole effects on channel permeation.: I.: Experiments with (5F-Indole)Trp13 gramicidin A channels [J].
Busath, DD ;
Thulin, CD ;
Hendershot, RW ;
Phillips, LR ;
Maughan, P ;
Cole, CD ;
Bingham, NC ;
Morrison, S ;
Baird, LC ;
Hendershot, RJ ;
Cotten, M ;
Cross, TA .
BIOPHYSICAL JOURNAL, 1998, 75 (06) :2830-2844
[27]   Three-dimensional Poisson-Nernst-Planck theory studies:: Influence of membrane electrostatics on gramicidin A channel conductance [J].
Cárdenas, AE ;
Coalson, RD ;
Kurnikova, MG .
BIOPHYSICAL JOURNAL, 2000, 79 (01) :80-93
[28]   From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels [J].
Catterall, WA .
NEURON, 2000, 26 (01) :13-25
[29]   Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement [J].
Chanda, B ;
Asamoah, OK ;
Blunck, R ;
Roux, B ;
Bezanilla, F .
NATURE, 2005, 436 (7052) :852-856
[30]   Side-chain charge effects and conductance determinants in the pore of CIC-0 chloride channels [J].
Chen, MF ;
Chen, TY .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (02) :133-145