Multichannel spectrum of neutral particles trapped by a wire

被引:20
作者
Burke, JP [1 ]
Greene, CH [1 ]
Esry, BD [1 ]
机构
[1] UNIV COLORADO, DEPT PHYS, BOULDER, CO 80309 USA
来源
PHYSICAL REVIEW A | 1996年 / 54卷 / 04期
关键词
D O I
10.1103/PhysRevA.54.3225
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The energy spectrum of a neutral atom bound in the magnetic field created by a straight line direct current is given by the Rydberg formula for particles with spin less than 3/2. An adiabatic representation leads to a natural understanding of this spectrum and provides a good approximation to the bound state energy levels. A more accurate finite element method is applied to directly solve the time-independent Schrodinger equation for neutral particles with arbitrary spin. A combination of the finite element method with multichannel quantum defect theory provides a more efficient method to calculate the bound state energies. In addition, new spectral features arise for particles with spin greater than 1.
引用
收藏
页码:3225 / 3234
页数:10
相关论文
共 27 条
  • [1] AYMAR M, UNPUB
  • [2] Bathe K. J., 1976, NUMERICAL METHODS FI
  • [3] BATHE KJ, 1976, FINITE ELEMENT PROCE
  • [4] Waveguide for cold atoms: Spin-1 magnetic particles and a filamentary current
    BergSorensen, K
    Burns, MM
    Golovchenko, JA
    Hau, LV
    [J]. PHYSICAL REVIEW A, 1996, 53 (03): : 1653 - 1667
  • [5] QUANTUM STATES OF NEUTRONS BOUND IN THE MAGNETIC-FIELD OF A RECTILINEAR CURRENT
    BLUMEL, R
    DIETRICH, K
    [J]. PHYSICAL REVIEW A, 1991, 43 (01): : 22 - 28
  • [6] DIRECT NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION FOR QUANTUM SCATTERING PROBLEMS
    BOTERO, J
    SHERTZER, J
    [J]. PHYSICAL REVIEW A, 1992, 46 (03): : R1155 - R1158
  • [7] Fano U., 1986, ATOMIC COLLISIONS SP
  • [8] FRIEDRICH H, 1990, THEORETICAL ATOMIC P
  • [9] GENERALIZED QUANTUM DEFECTS - THEIR VARIATIONS WITH ENERGY AND RADIUS
    GREENE, CH
    [J]. PHYSICAL REVIEW A, 1979, 20 (03): : 656 - 669
  • [10] GENERAL-FORM OF THE QUANTUM-DEFECT THEORY .2.
    GREENE, CH
    RAU, ARP
    FANO, U
    [J]. PHYSICAL REVIEW A, 1982, 26 (05): : 2441 - 2459