Penalized minimum-distance estimates in finite mixture models

被引:70
作者
Chen, JH [1 ]
Kalbfleisch, JD [1 ]
机构
[1] UNIV WATERLOO,DEPT STAT & ACTUARIAL SCI,WATERLOO,ON N2L 3G1,CANADA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1996年 / 24卷 / 02期
关键词
consistency; finite mixture model; minimum-distance method; mixing distribution; number of components;
D O I
10.2307/3315623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When finite mixture models are used to fit data, it is sometimes important to estimate the number of mixture components. A nonparametric maximum-likelihood approach may result in too many support points and, in general, does not yield a consistent estimator. A penalized likelihood approach tends to produce a fit with fewer components, but it is not known whether that approach produces a consistent estimate of the number of mixture components. We suggest the use of a penalized minimum-distance method. It is shown that the estimator obtained is consistent for both the mixing distribution and the number of mixture components.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 20 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [10.1007/978-1-4612-1694-0_15, DOI 10.1007/978-1-4612-1694-0_15]
[2]  
[Anonymous], 1992, IDENTIFIABILITY STOC
[3]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[4]   OPTIMAL RATE OF CONVERGENCE FOR FINITE MIXTURE-MODELS [J].
CHEN, JH .
ANNALS OF STATISTICS, 1995, 23 (01) :221-233
[5]   EMPIRICAL LIKELIHOOD ESTIMATION FOR FINITE POPULATIONS AND THE EFFECTIVE USAGE OF AUXILIARY INFORMATION [J].
CHEN, JH ;
QIN, J .
BIOMETRIKA, 1993, 80 (01) :107-116
[6]   ONE-SIDED INFERENCE ABOUT FUNCTIONALS OF A DENSITY [J].
DONOHO, DL .
ANNALS OF STATISTICS, 1988, 16 (04) :1390-1420
[7]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[8]  
GHOSH JK, 1985, P BERK C HON J NEYM, V2
[9]  
HARTIGAN JA, 1985, P BERK C HON J NEYM, V2