Role of αv integrins in adenovirus cell entry and gene delivery

被引:220
作者
Nemerow, GR [1 ]
Stewart, PL [1 ]
机构
[1] Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA
关键词
D O I
10.1128/MMBR.63.3.725-734.1999
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Adenoviruses (Ad) are a significant cause of acute infections in humans; however, replication-defective forms of this virus are currently under investigation for human gene therapy Approximately 20 to 25% of all the gene therapy trials (phases I to III) conducted over the past 10 years involve the use of Ad gene delivery for treatment inherited or acquired diseases. At present, the most promising applications involve the use of Ad vectors to irradicate certain nonmetastatic tumors and to promote angiogenesis in order to alleviate cardiovascular disease. While specific problems of using Ad vectors remain to be overcome las is true for almost all viral and nonviral delivery methods), a distinct advantage of Ad is the extensive knowledge of its macromolecular structure, genome organization, sequence, and mode of replication. Moreover, significant information has also been acquired on the interaction of Ad particles with distinct host cell receptors, events which strongly affect virus tropism. This review provides an overview of the structure and function of Ad attachment (coxsackievirus and Ad receptor [CAR]) and internalization (alpha(nu) integrins) receptors and discusses their precise role in virus infection and gene delivery. Recent structure studies of integrin-Ad complexes by cryoelectron microscopy are also highlighted. Finally, unanswered questions arising from the current state of knowledge of Ad-receptor interactions are presented in the context of improving Ad vectors for future human gene therapy applications.
引用
收藏
页码:725 / +
页数:12
相关论文
共 106 条
[1]   THE 3-DIMENSIONAL STRUCTURE OF FOOT-AND-MOUTH-DISEASE VIRUS AT 2.9-A RESOLUTION [J].
ACHARYA, R ;
FRY, E ;
STUART, D ;
FOX, G ;
ROWLANDS, D ;
BROWN, F .
NATURE, 1989, 337 (6209) :709-716
[2]   Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain [J].
Akke, M ;
Liu, J ;
Cavanagh, J ;
Erickson, HP ;
Palmer, AG .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (01) :55-59
[3]   VITRONECTIN RECEPTOR ANTIBODIES INHIBIT INFECTION OF HELA AND A549 CELLS BY ADENOVIRUS-TYPE-12 BUT NOT BY ADENOVIRUS TYPE-2 [J].
BAI, M ;
CAMPISI, L ;
FREIMUTH, P .
JOURNAL OF VIROLOGY, 1994, 68 (09) :5925-5932
[4]   MUTATIONS THAT ALTER AN ARG-GLY-ASP (RGD) SEQUENCE IN THE ADENOVIRUS TYPE-2 PENTON BASE PROTEIN ABOLISH ITS CELL-ROUNDING ACTIVITY AND DELAY VIRUS REPRODUCTION IN FLAT CELLS [J].
BAI, M ;
HARFE, B ;
FREIMUTH, P .
JOURNAL OF VIROLOGY, 1993, 67 (09) :5198-5205
[5]   Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 [J].
Bergelson, JM ;
Cunningham, JA ;
Droguett, G ;
KurtJones, EA ;
Krithivas, A ;
Hong, JS ;
Horwitz, MS ;
Crowell, RL ;
Finberg, RW .
SCIENCE, 1997, 275 (5304) :1320-1323
[6]   IDENTIFICATION OF THE INTEGRIN VLA-2 AS A RECEPTOR FOR ECHOVIRUS-1 [J].
BERGELSON, JM ;
SHEPLEY, MP ;
CHAN, BMC ;
HEMLER, ME ;
FINBERG, RW .
SCIENCE, 1992, 255 (5052) :1718-1720
[7]   SPLICED SEGMENTS AT 5' TERMINUS OF ADENOVIRUS 2 LATE MESSENGER-RNA [J].
BERGET, SM ;
MOORE, C ;
SHARP, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (08) :3171-3175
[8]   An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [J].
Bischoff, JR ;
Kim, DH ;
Williams, A ;
Heise, C ;
Horn, S ;
Muna, M ;
Ng, L ;
Nye, JA ;
SampsonJohannes, A ;
Fattaey, A ;
McCormick, F .
SCIENCE, 1996, 274 (5286) :373-376
[9]   PH-DEPENDENT LYSIS OF LIPOSOMES BY ADENOVIRUS [J].
BLUMENTHAL, R ;
SETH, P ;
WILLINGHAM, MC ;
PASTAN, I .
BIOCHEMISTRY, 1986, 25 (08) :2231-2237
[10]   ADENOVIRUS-MEDIATED IN-VIVO GENE-TRANSFER [J].
BRODY, SL ;
CRYSTAL, RG .
GENE THERAPY FOR NEOPLASTIC DISEASES, 1994, 716 :90-103