Iron homeostasis, oxidative stress, and DNA damage

被引:499
作者
Meneghini, R
机构
[1] Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo SP, São Paulo, SP
[2] Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, 05599-970 São Paulo, SP
基金
巴西圣保罗研究基金会;
关键词
calcium; DNA strand break; Fenton chemistry; ferritin; heme oxygenase; hydroxyl radical; iron regulatory protein; iron responsive element; metallothionein; nuclease; phospho-glycolate; transferrin receptor;
D O I
10.1016/S0891-5849(97)00016-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellular DNA damage under prooxidant conditions has been shown to be mediated by iron. In fact, iron is an important element in the establishment of a prooxidant status in the cell. It is discussed that there exists a mutual dependence between iron metabolism and oxidative stress. Changes in the former by means of genetic manipulation bring about modification in the redox status as judge by oxidative damage in DNA. On the other hand, the induction of a cellular prooxidative condition activates the protein IRP (iron regulatory protein) in a way that renders the cell more able to take up iron. The possible implications of these results is discussed in the light of recent findings reported in the literature on hydrogen peroxide as a signaling species for cell proliferation. The question of DNA strand break formation under prooxidant conditions is reviewed from the viewpoint of which agent is more important: an oxidant generated by Fenton type reaction or Ca2+-activated nucleases. The presence of iron in the nucleus is reviewed. Results have been produced indicating that the larger concentration of this metal in the nucleus, as compared to the cytosol, seems to be explained by an iron-type P-ATPase. There is no explanation, presently, for iron presence in the nucleus, but it certainly imposes a prooxidant trend that needs to be counterbalanced in some way, and evidence is reviewed that nuclear metallothionein plays a role in this regard. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:783 / 792
页数:10
相关论文
共 74 条
[1]  
AISEN P, 1994, ADV EXP MED BIOL, V356, P31
[2]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[3]  
APPLEGATE LA, 1991, CANCER RES, V51, P974
[4]   THE FET3 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES A MULTICOPPER OXIDASE REQUIRED FOR FERROUS IRON UPTAKE [J].
ASKWITH, C ;
EIDE, D ;
VANHO, A ;
BERNARD, PS ;
LI, LT ;
DAVISKAPLAN, S ;
SIPE, DM ;
KAPLAN, J .
CELL, 1994, 76 (02) :403-410
[5]   A NEW ROLE FOR THE TRANSFERRIN RECEPTOR IN THE RELEASE OF IRON FROM TRANSFERRIN [J].
BALI, PK ;
ZAK, O ;
AISEN, P .
BIOCHEMISTRY, 1991, 30 (02) :324-328
[6]   MUTATION IN THE IRON-RESPONSIVE ELEMENT OF THE L-FERRITIN MESSENGER-RNA IN A FAMILY WITH DOMINANT HYPERFERRITINEMIA AND CATARACT [J].
BEAUMONT, C ;
LENEUVE, P ;
DEVAUX, I ;
SCOAZEC, JY ;
BERTHIER, M ;
LOISEAU, MN ;
GRANDCHAMP, B ;
BONNEAU, D .
NATURE GENETICS, 1995, 11 (04) :444-446
[7]   DNA STRAND BREAKS PRODUCED BY OXIDATIVE STRESS IN MAMMALIAN-CELLS EXHIBIT 3'-PHOSPHOGLYCOLATE TERMINI [J].
BERTONCINI, CRA ;
MENEGHINI, R .
NUCLEIC ACIDS RESEARCH, 1995, 23 (15) :2995-3002
[8]   SUBSTRATE-SPECIFICITY OF THE ESCHERICHIA-COLI FPG PROTEIN (FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE) - EXCISION OF PURINE LESIONS IN DNA PRODUCED BY IONIZING-RADIATION OR PHOTOSENSITIZATION [J].
BOITEUX, S ;
GAJEWSKI, E ;
LAVAL, J ;
DIZDAROGLU, M .
BIOCHEMISTRY, 1992, 31 (01) :106-110
[9]   REACTIONS OF OXYL RADICALS WITH DNA [J].
BREEN, AP ;
MURPHY, JA .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (06) :1033-1077
[10]   SUPEROXIDE AND HYDROGEN-PEROXIDE IN RELATION TO MAMMALIAN-CELL PROLIFERATION [J].
BURDON, RH .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (04) :775-794