An assessment of nonmonotone linesearch techniques for unconstrained optimization

被引:134
作者
Toint, PL
机构
关键词
nonmonotone algorithms; linesearch; unconstrained optimization;
D O I
10.1137/S106482759427021X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to discuss the potential of nonmonotone techniques for enforcing convergence of unconstrained minimization algorithms from starting points distant from the solution. Linesearch-based algorithms are considered for both small and large problems, and extensive numerical experiments show that this potential is sometimes considerable. A new variant is introduced in order to limit some of the identified drawbacks of the existing techniques. This variant is again numerically tested and appears to be competitive. Finally, the impact of preconditioning on the considered methods is examined.
引用
收藏
页码:725 / 739
页数:15
相关论文
共 27 条
[11]  
Gill P. E., 1974, Mathematical Programming, V7, P311, DOI 10.1007/BF01585529
[12]   PRECONDITIONERS FOR INDEFINITE SYSTEMS ARISING IN OPTIMIZATION [J].
GILL, PE ;
MURRAY, W ;
PONCELEON, DB ;
SAUNDERS, MA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) :292-311
[13]   LOCAL CONVERGENCE ANALYSIS FOR PARTITIONED QUASI-NEWTON UPDATES [J].
GRIEWANK, A ;
TOINT, PL .
NUMERISCHE MATHEMATIK, 1982, 39 (03) :429-448
[14]   A TRUNCATED NEWTON METHOD WITH NONMONOTONE LINE SEARCH FOR UNCONSTRAINED OPTIMIZATION [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (03) :401-419
[15]   A CLASS OF NONMONOTONE STABILIZATION METHODS IN UNCONSTRAINED OPTIMIZATION [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
NUMERISCHE MATHEMATIK, 1991, 59 (08) :779-805
[16]   A NONMONOTONE LINE SEARCH TECHNIQUE FOR NEWTON METHOD [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :707-716
[17]  
KANZOW C, 1994, A79 U HAMB I APPL MA
[18]   ON THE LIMITED MEMORY BFGS METHOD FOR LARGE-SCALE OPTIMIZATION [J].
LIU, DC ;
NOCEDAL, J .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :503-528
[19]  
Ortega J.M, 1970, CLASSICS APPL MATH
[20]   MODIFIED CHOLESKY FACTORIZATIONS FOR SPARSE PRECONDITIONERS [J].
SCHLICK, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :424-445