Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites

被引:46
作者
Bao, W. S. [1 ,2 ]
Meguid, S. A. [1 ]
Zhu, Z. H. [2 ]
Pan, Y. [3 ]
Weng, G. J. [3 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada
[3] Rutgers State Univ, Dept Mech & Aerosp Engn, New Brunswick, NJ 08903 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ELECTRONIC TRANSPORT; CONDUCTIVITY; FORMULA;
D O I
10.1063/1.4809767
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper examines the effect of carbon nanotube (CNT) geometry upon the electrical properties of the corresponding functionalized nanocomposites. Specifically, Monte Carlo (MC) simulations are conducted to evaluate the effect of CNT length non-uniformity and waviness upon tunneling. Three aspects of the work are considered. The first is concerned with the application of periodic boundary condition that ensures periodic connectivity of the percolating paths via the use of an improved connective percolating network recognition scheme. The second is concerned with the determination of the electrical conductivity of the percolated system rather than the critical percolation threshold for varied CNT geometries using Weibull distribution to statistically account for the geometry variations. The third is concerned with the validation of our MC simulations. Our results reveal that (i) the CNT geometry, as determined by CNT length variability and waviness, plays a more dominant role in percolation threshold rather than tunneling barrier height and (ii) higher CNT loading beyond a critical percolation significantly influences the role of tunneling barrier height upon the electrical conductivity. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites [J].
Bao, W. S. ;
Meguid, S. A. ;
Zhu, Z. H. ;
Weng, G. J. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
[2]   Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes [J].
Bao, W. S. ;
Meguid, S. A. ;
Zhu, Z. H. ;
Meguid, M. J. .
NANOTECHNOLOGY, 2011, 22 (48)
[3]  
Bohm D., 1989, Quantum Theory
[4]   Contact resistance between carbon nanotubes [J].
Buldum, A ;
Lu, JP .
PHYSICAL REVIEW B, 2001, 63 (16)
[5]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[6]   CHARGE GENERATION ON DIELECTRIC SURFACES [J].
DAVIES, DK .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1969, 2 (11) :1533-&
[7]   ALIGNED CARBON NANOTUBE FILMS - PRODUCTION AND OPTICAL AND ELECTRONIC-PROPERTIES [J].
DEHEER, WA ;
BACSA, WS ;
CHATELAIN, A ;
GERFIN, T ;
HUMPHREYBAKER, R ;
FORRO, L ;
UGARTE, D .
SCIENCE, 1995, 268 (5212) :845-847
[8]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[9]  
Eberly DavidH., 2001, 3D GAME ENGINE DESIG
[10]   Metallic resistivity in crystalline ropes of single-wall carbon nanotubes [J].
Fischer, JE ;
Dai, H ;
Thess, A ;
Lee, R ;
Hanjani, NM ;
Dehaas, DL ;
Smalley, RE .
PHYSICAL REVIEW B, 1997, 55 (08) :R4921-R4924