The satellite P4 phage Delta protein positively regulates the late genes of its helper bacteriophage P2, as well as its own late genes. Delta is a member of a class of activators associated with P2- or P4-like phages and is the largest member of this family. It resembles a covalently joined head-to-tail dimer of the other members of this family of activators. We have analyzed the requirement for both standard domains of Delta through the isolation of amber mutants and the insertion of amber linkers. We show that both domains of Delta are required for DNA binding in vivo and for transcriptional activity. Proper spacing between the two domains is important for activity at two of the four P2 promoters. Expression of both domains from different plasmids causes activation of late gene transcription in vivo of all six late promoters of P2 and P4. A monomric Delta from another satellite phage, phi R73, can function efficiently as a covalent dimer but when this Delta is made dimeric with the second half of P4 delta, it activates less efficiently. (C) 1997 Academic Press.