Integrable theories in any dimension and homogenous spaces

被引:12
作者
Ferreira, LA [1 ]
Leite, EE [1 ]
机构
[1] Univ Nacl Estadual Sao Paulo, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
integrability; non-perturbative methods; solitons;
D O I
10.1016/S0550-3213(99)00090-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct local zero curvature representations for non-linear sigma models on homogeneous spaces, defined on a space-time of any dimension, following a recently proposed approach to integrable theories in dimensions higher than two. We present some sufficient conditions for the existence of integrable submodels possessing an infinite number of local conservation laws. Examples involving symmetric spaces and group manifolds are given. The CPN models are discussed in detail. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:471 / 500
页数:30
相关论文
共 17 条
[1]   A new approach to integrable theories in any dimension [J].
Alvarez, O ;
Ferreira, LA ;
Guillen, JS .
NUCLEAR PHYSICS B, 1998, 529 (03) :689-736
[2]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[3]   Dualisation of dualities II:: twisted self-duality of doubled fields and superdualities [J].
Cremmer, E ;
Julia, B ;
Lü, H ;
Pope, CN .
NUCLEAR PHYSICS B, 1998, 535 (1-2) :242-292
[4]   Euclidean-signature supergravities, dualities and instantons [J].
Cremmer, E ;
Lavrinenko, IV ;
Lu, H ;
Pope, CN ;
Stelle, KS ;
Tran, TA .
NUCLEAR PHYSICS B, 1998, 534 (1-2) :40-82
[5]   MORE ABOUT NON-LINEAR SIGMA-MODELS ON SYMMETRIC-SPACES [J].
EICHENHERR, H ;
FORGER, M .
NUCLEAR PHYSICS B, 1980, 164 (03) :528-535
[6]  
Ferreira L. A., 1998, Proceedings of the IXth Jorge Andre Swieca Summer School. Particles and Fields, P133
[7]   Nonlinear sigma models in (1+2) dimensions and an infinite number of conserved currents [J].
Fujii, K ;
Suzuki, T .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (01) :49-59
[8]  
FUJII K, HEPTH9809149
[9]  
FUJII K, HEPTH9806084
[10]   Integrable chiral theories in 2+1 dimensions [J].
Gianzo, D ;
Madsen, JO ;
Guillén, JS .
NUCLEAR PHYSICS B, 1999, 537 (1-3) :586-598