Autoregulation of ribosome biosynthesis by a translational response in fission yeast

被引:38
作者
Bachand, F [1 ]
Lackner, DH
Bähler, J
Silver, PA
机构
[1] Univ Sherbrooke, Dept Biochem, Sherbrooke, PQ, Canada
[2] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
[3] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Boston, MA 02115 USA
基金
英国惠康基金;
关键词
D O I
10.1128/MCB.26.5.1731-1742.2006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Maintaining the appropriate balance between the small and large ribosomal subunits is critical for translation and cell growth. We previously identified the 40S ribosomal protein S2 (rpS2) as a substrate of the protein arginine methyltransferase 3 (RMT3) and reported a misregulation of the 40S/60S ratio in rmt3 deletion mutants of Schizosaccharomyces pombe. For this study, using DNA microarrays, we have investigated the genome-wide biological response of rmt3-null cells to this ribosomal subunit imbalance. Whereas little change was observed at the transcriptional level, a number of genes showed significant alterations in their polysomal-to-monosomal ratios in rmt3 Delta mutants. Importantly, nearly all of the 40S ribosomal protein-encoding mRNAs showed increased ribosome density in rmt3 disruptants. Sucrose gradient analysis also revealed that the ribosomal subunit imbalance detected in rmt3-null cells is due to a deficit in small-subunit levels and can be rescued by rpS2 overexpression. Our results indicate that rmt3-null fission yeast compensate for the reduced levels of small ribosomal subunits by increasing the ribosome density, and likely the translation efficiency, of 40S ribosomal protein-encoding mRNAs. Our findings support the existence of autoregulatory mechanisms that control ribosome biosynthesis and translation as an important layer of gene regulation.
引用
收藏
页码:1731 / 1742
页数:12
相关论文
共 67 条
[1]   EFFECT OF RP51 GENE DOSAGE ALTERATIONS ON RIBOSOME SYNTHESIS IN SACCHAROMYCES-CEREVISIAE [J].
ABOVICH, N ;
GRITZ, L ;
TUNG, L ;
ROSBASH, M .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (12) :3429-3435
[2]   Many ribosomal protein genes are cancer genes in zebrafish [J].
Amsterdam, A ;
Sadler, KC ;
Lai, K ;
Farrington, S ;
Bronson, RT ;
Lees, JA ;
Hopkins, N .
PLOS BIOLOGY, 2004, 2 (05) :690-698
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits [J].
Bachand, F ;
Silver, PA .
EMBO JOURNAL, 2004, 23 (13) :2641-2650
[5]   Arginine methylation: An emerging regulator of protein function [J].
Bedford, MT ;
Richard, S .
MOLECULAR CELL, 2005, 18 (03) :263-272
[6]   Characterizing gene sets with FuncAssociate [J].
Berriz, GF ;
King, OD ;
Bryant, B ;
Sander, C ;
Roth, FP .
BIOINFORMATICS, 2003, 19 (18) :2502-2504
[7]   Activating transcription factor 4 is translationally regulated by hypoxic stress [J].
Blais, JD ;
Filipenko, V ;
Bi, MX ;
Harding, HP ;
Ron, D ;
Koumenis, C ;
Wouters, BG ;
Bell, JC .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (17) :7469-7482
[8]   Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control [J].
Boisvert, FM ;
Déry, U ;
Masson, JY ;
Richard, S .
GENES & DEVELOPMENT, 2005, 19 (06) :671-676
[9]   A proteomic analysis of arginine-methylated protein complexes [J].
Boisvert, FM ;
Côté, J ;
Boulanger, MC ;
Richard, S .
MOLECULAR & CELLULAR PROTEOMICS, 2003, 2 (12) :1319-1330
[10]  
BOISVERT FM, 2005, SCI STKE, pRE2, DOI DOI 10.1126/STKE.2712005RE2