The Arabidopsis onset of leaf death5 Mutation of Quinolinate Synthase Affects Nicotinamide Adenine Dinucleotide Biosynthesis and Causes Early Ageing

被引:94
作者
Schippers, Jos H. M. [1 ]
Nunes-Nesi, Adriano [2 ]
Apetrei, Roxana [1 ]
Hille, Jacques [1 ]
Fernie, Alisdair R. [2 ]
Dijkwel, Paul P. [1 ,3 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, NL-9751 NN Haren, Netherlands
[2] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
[3] Massey Univ, Inst Mol BioSci, Palmerston North 4442, New Zealand
关键词
D O I
10.1105/tpc.107.056341
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leaf senescence in Arabidopsis thaliana is a strict, genetically controlled nutrient recovery program, which typically progresses in an age-dependent manner. Leaves of the Arabidopsis onset of leaf death5 ( old5) mutant exhibit early developmental senescence. Here, we show that OLD5 encodes quinolinate synthase ( QS), a key enzyme in the de novo synthesis of NAD. The Arabidopsis QS was previously shown to carry a Cys desulfurase domain that stimulates reconstitution of the oxygen-sensitive Fe-S cluster that is required for QS activity. The old5 lesion in this enzyme does not affect QS activity but it decreases its Cys desulfurase activity and thereby the long-term catalytic competence of the enzyme. The old5 mutation causes increased NAD steady state levels that coincide with increased activity of enzymes in the NAD salvage pathway. NAD plays a key role in cellular redox reactions, including those of the tricarboxylic acid cycle. Broad-range metabolite profiling of the old5 mutant revealed that it contains higher levels of tricarboxylic acid cycle intermediates and nitrogen-containing amino acids. The mutant displays a higher respiration rate concomitant with increased expression of oxidative stress markers. We postulate that the alteration in the oxidative state is integrated into the plant developmental program, causing early ageing of the mutant.
引用
收藏
页码:2909 / 2925
页数:17
相关论文
共 114 条
[1]  
[Anonymous], 1991, Evolutionary Biology of Aging
[2]   A novel senescence-associated gene encoding γ-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf senescence [J].
Ansari, MI ;
Lee, RH ;
Chen, SCG .
PHYSIOLOGIA PLANTARUM, 2005, 123 (01) :1-8
[3]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[4]   Production and scavenging of reactive oxygen species in chloroplasts and their functions [J].
Asada, Kozi .
PLANT PHYSIOLOGY, 2006, 141 (02) :391-396
[5]   The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1 [J].
Barth, C ;
Moeder, W ;
Klessig, DF ;
Conklin, PL .
PLANT PHYSIOLOGY, 2004, 134 (04) :1784-1792
[6]  
Bates PA, 2001, PROTEINS, P39
[7]   UV-B- and oxidative stress-induced increase in nicotinamide and trigonelline and inhibition of defensive metabolism induction by poly(ADP-ribose)polymerase inhibitor in plant tissue [J].
Berglund, T ;
Kalbin, G ;
Strid, A ;
Rydstrom, J ;
Ohlsson, AB .
FEBS LETTERS, 1996, 380 (1-2) :188-193
[8]   Branched-chain amino acid metabolism in higher plants [J].
Binder, Stefan ;
Knill, Tanja ;
Schuster, Joachim .
PHYSIOLOGIA PLANTARUM, 2007, 129 (01) :68-78
[9]   The evolutionary basis of leaf senescence: method to the madness? [J].
Bleecker, AB .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (01) :73-78
[10]   Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis [J].
Buchanan-Wollaston, V ;
Page, T ;
Harrison, E ;
Breeze, E ;
Lim, PO ;
Nam, HG ;
Lin, JF ;
Wu, SH ;
Swidzinski, J ;
Ishizaki, K ;
Leaver, CJ .
PLANT JOURNAL, 2005, 42 (04) :567-585