Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

被引:125
作者
Pascu, Elena I.
Stokes, Joseph
McGuinness, Garrett B.
机构
[1] Dublin City Univ, Ctr Med Engn Res, Dublin 9, Ireland
[2] Dublin City Univ, Sch Mech & Mfg Engn, Dublin 9, Ireland
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2013年 / 33卷 / 08期
关键词
Polyhydroxybutyrate-co-(3-hydroxyvalerate); PHBV; Silk fibroin; Nanohydroxyapatite; Electrospinning; Bone tissue engineering; PHYSICOCHEMICAL PROPERTIES; NANOFIBROUS SCAFFOLDS; NANOCOMPOSITE; BIOMATERIALS; FABRICATION; ATTACHMENT; GENERATION; MATRICES; FIBERS;
D O I
10.1016/j.msec.2013.08.012
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 mu m. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (+/-033 kPa) for electrospun samples of PHBV only to 1.4 kPa (+/-0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples prepared with 5 (w/vol) % each of nHAp and SF did not show a similar improvement. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:4905 / 4916
页数:12
相关论文
共 60 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Fabrication and Characterization of Collagen-Immobilized Porous PHBV/HA Nanocomposite Scaffolds for Bone Tissue Engineering [J].
Baek, Jin-Young ;
Xing, Zhi-Cai ;
Kwak, Giseop ;
Yoon, Keun-Byoung ;
Park, Soo-Young ;
Park, Lee Soon ;
Kang, Inn-Kyu .
JOURNAL OF NANOMATERIALS, 2012, 2012
[3]   OSTEOINDUCTIVE BIOMATERIALS: CURRENT KNOWLEDGE OF PROPERTIES, EXPERIMENTAL MODELS AND BIOLOGICAL MECHANISMS [J].
Barradas, Ana M. C. ;
Yuan, Huipin ;
van Blitterswijk, Clemens A. ;
Habibovic, Pamela .
EUROPEAN CELLS & MATERIALS, 2011, 21 :407-429
[4]   An electrospun triphasic nanofibrous scaffold for bone tissue engineering [J].
Catledge, S. A. ;
Clem, W. C. ;
Shrikishen, N. ;
Chowdhury, S. ;
Stanishevsky, A. V. ;
Koopman, M. ;
Vohra, Y. K. .
BIOMEDICAL MATERIALS, 2007, 2 (02) :142-150
[5]   Electrohydrodynamics: A facile technique to fabricate drug delivery systems [J].
Chakraborty, Syandan ;
Liao, I-Chien ;
Adler, Andrew ;
Leong, Kam W. .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (12) :1043-1054
[6]   The application of polyhydroxyalkanoates as tissue engineering materials [J].
Chen, GQ ;
Wu, Q .
BIOMATERIALS, 2005, 26 (33) :6565-6578
[7]   Normal Bone Anatomy and Physiology [J].
Clarke, Bart .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2008, 3 :S131-S139
[8]   Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations [J].
Cui, Wenguo ;
Li, Xiaohong ;
Xie, Chengying ;
Zhuang, Huihui ;
Zhou, Shaobing ;
Weng, Jie .
BIOMATERIALS, 2010, 31 (17) :4620-4629
[9]   Electrospinning of polymer melts:: Phenomenological observations [J].
Dalton, Paul D. ;
Grafahrend, Dirk ;
Klinkhammer, Kristina ;
Klee, Doris ;
Moeller, Martin .
POLYMER, 2007, 48 (23) :6823-6833
[10]   Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning [J].
Deng, Xu-Liang ;
Sui, Gang ;
Zhao, Min-Li ;
Chen, Guo-Qiang ;
Yang, Xiao-Ping .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2007, 18 (01) :117-130