Lattice Boltzmann method for irregular grids

被引:21
作者
Karlin, IV
Succi, S
Orszag, S
机构
[1] ETH Zurich, Dept Mat, Inst Polymer, CH-8092 Zurich, Switzerland
[2] Ist Applicaz Calcolo, I-00161 Rome, Italy
[3] Yale Univ, New Haven, CT 06520 USA
[4] Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk, Russia
关键词
D O I
10.1103/PhysRevLett.82.5245
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate an extension of the lattice Boltzmann equation to irregular lattices. It is demonstrated that the recovery of isothermal Navier-Stokes equations is possible by a construction of the local equilibrium subject to an extended list of moment constraints which take into account the lattice geometry. A particular version of the local equilibrium is discussed in some detail.
引用
收藏
页码:5245 / 5248
页数:4
相关论文
共 16 条
[1]   Physical symmetry and lattice symmetry in the lattice Boltzmann method [J].
Cao, NZ ;
Shen, SY ;
Jin, S ;
Martinez, D .
PHYSICAL REVIEW E, 1997, 55 (01) :R21-R24
[2]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[3]  
CHOPARD B, 1997, P 2 C CELL AUT RES I, P13
[4]   RANDOM LATTICE FIELD-THEORY - GENERAL FORMULATION [J].
CHRIST, NH ;
FRIEDBERG, R ;
LEE, TD .
NUCLEAR PHYSICS B, 1982, 202 (01) :89-125
[5]  
DHUMIERES D, 1986, EUROPHYS LETT, V2, P291, DOI 10.1209/0295-5075/2/4/006
[6]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[7]   Some progress in lattice Boltzmann method .1. Nonuniform mesh grids [J].
He, XY ;
Luo, LS ;
Dembo, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129 (02) :357-363
[8]   Maximum entropy principle for lattice kinetic equations [J].
Karlin, IV ;
Gorban, AN ;
Succi, S ;
Boffi, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :6-9
[9]  
KARLIN IV, 1998, PHYS REV E, V58, P4053
[10]  
KARLIN IV, IN PRESS EUROPHYS LE