Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector

被引:98
作者
Song, BW
Vinters, HV
Wu, DF
Pardridge, WM
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Sch Med, Dept Pathol, Los Angeles, CA 90024 USA
关键词
D O I
10.1124/jpet.301.2.605
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Basic fibroblast growth factor (bFGF) has minimal pharmacological effects in the central nervous system in the absence of blood-brain barrier (BBB) disruption. BBB transport of bFGF occurs via an absorptive-mediated transcytosis mechanism, which is relatively inefficient. To enhance the BBB transport of bFGF, this neurotrophin was reformulated to enable receptor-mediated transport across the BBB via the transferrin receptor. bFGF was monobiotinylated and coupled to a BBB drug-delivery vector comprised of streptavidin (SA) and the OX26 monoclonal antibody to the rat transferrin receptor. The entire conjugate of biotinylated bFGF bound to the OX26-SA is designated bio-bFGF/OX26-SA. The bFGF retains receptor-binding affinity and has increased brain uptake following conjugation to OX26-SA. The bio-bFGF/OX26-SA conjugate protects cortical cell cultures against hypoxia/reoxygenation insult in a dose-dependent manner in vitro. A single intravenous injection of bio-bFGF/OX26-SA, equivalent to a dose of 25 mug/kg bFGF, produces an 80% reduction in infarct volume in the brain of rats subjected to permanent occlusion of the middle cerebral artery in parallel with a significant improvement of neurologic deficit. The neuroprotection is time-dependent, and there is a 67% reduction in stroke volume if the conjugate is administered at 60 min after arterial occlusion, whereas no significant reduction in stroke volume is observed if treatment is delayed 2 h. In conclusion, neuroprotection in regional brain ischemia is possible following the delayed intravenous injection of low doses of bFGF providing the neurotrophin is conjugated to a BBB drug-targeting system.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 31 条
[1]   Effect of transient focal ischemia on blood-brain barrier permeability in the rat: Correlation to cell injury [J].
Albayrak, S ;
Zhao, Q ;
Siesjo, BK ;
Smith, ML .
ACTA NEUROPATHOLOGICA, 1997, 94 (02) :158-163
[2]   Potential usefulness of basic fibroblast growth factor as a treatment for stroke [J].
Ay, H ;
Ay, I ;
Koroshetz, WJ ;
Finklestein, SP .
CEREBROVASCULAR DISEASES, 1999, 9 (03) :131-135
[3]   Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats [J].
Belayev, L ;
Busto, R ;
Zhao, WZ ;
Ginsberg, MD .
BRAIN RESEARCH, 1996, 739 (1-2) :88-96
[4]   IN-VIVO DEMONSTRATION OF SUBCELLULAR-LOCALIZATION OF ANTITRANSFERRIN RECEPTOR MONOCLONAL ANTIBODY-COLLOIDAL GOLD CONJUGATE IN BRAIN CAPILLARY ENDOTHELIUM [J].
BICKEL, U ;
KANG, YS ;
YOSHIKAWA, T ;
PARDRIDGE, WM .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1994, 42 (11) :1493-1497
[5]  
CAMBRON H, 1995, LAB ANIM SCI, V45, P303
[6]   SUPEROXIDE AND NITRIC-OXIDE COOPERATION IN HYPOXIA REOXYGENATION-INDUCED NEURON INJURY [J].
CAZEVIEILLE, C ;
MULLER, A ;
MEYNIER, F ;
BONNE, C .
FREE RADICAL BIOLOGY AND MEDICINE, 1993, 14 (04) :389-395
[7]  
Clark WM, 2000, NEUROLOGY, V54, pA88
[8]   Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor [J].
Deguchi, Y ;
Naito, T ;
Yuge, T ;
Furukawa, A ;
Yamada, S ;
Pardridge, WM ;
Kimura, R .
PHARMACEUTICAL RESEARCH, 2000, 17 (01) :63-69
[9]   Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity [J].
Dore, S ;
Kar, S ;
Quirion, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4772-4777
[10]   DELAYED TREATMENT WITH INTRAVENOUS BASIC FIBROBLAST GROWTH-FACTOR REDUCES INFARCT SIZE FOLLOWING PERMANENT FOCAL CEREBRAL-ISCHEMIA IN RATS [J].
FISHER, M ;
MEADOWS, ME ;
DO, T ;
WEISE, J ;
TRUBETSKOY, V ;
CHARETTE, M ;
FINKLESTEIN, SP .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1995, 15 (06) :953-959