Neurofuzzy state identification using prefiltering

被引:6
作者
Hong, X
Harris, CJ
Wilson, PA
机构
[1] Univ Southampton, Dept Elect & Comp Sci, Image Speech & Intelligent Syst Grp, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Dept Ship Sci, Southampton SO17 1BJ, Hants, England
来源
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS | 1999年 / 146卷 / 02期
关键词
D O I
10.1049/ip-cta:19990121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new state estimator algorithm is based on a neurofuzzy network and the kalman filter algorithm. The major contribution of the paper is recognition of a bias problem in the parameter estimation of the state-space model and the introduction of a simple, effective prefiltering method to achieve unbiased parameter estimates in the state-space model, which will then be applied for state estimation using the Kalman filtering algorithm. Fundamental to this method is a simple prefiltering procedure using a nonlinear principal component analysis method based on the neurofuzzy basis set. This prefiltering can be performed without prior system structure knowledge. Numerical examples demonstrate the effectiveness of the new approach.
引用
收藏
页码:234 / 240
页数:7
相关论文
共 17 条
[11]  
Goodwin G C., 1984, ADAPTIVE FILTERING P
[12]  
HONG X, 4 MANTIS ISIS
[13]  
HONG X, 1998, NEUROFUZZY NETWORK S
[14]  
Papoulis A., 1984, Probability, Random Variables and Stochastic Processes, V2nd
[15]  
Priestley M. B., 1980, Journal of Time Series Analysis, V1, P47, DOI 10.1111/j.1467-9892.1980.tb00300.x
[16]  
WEBB AR, 1993, 4739 DEF RES AG
[17]   A neurofuzzy network structure for modelling and state estimation of unknown nonlinear systems [J].
Wu, ZQ ;
Harris, CJ .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1997, 28 (04) :335-345