Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent, resistant rafts

被引:191
作者
Gandhavadi, M
Allende, D
Vidal, A
Simon, SA
McIntosh, TJ
机构
[1] Duke Univ, Med Ctr, Dept Cell Biol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
关键词
D O I
10.1016/S0006-3495(02)75501-X
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Lipid bilayers composed of unsaturated phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol are thought to contain microdomains that have similar detergent insolubility characteristics as rafts isolated from cell plasma membranes. We chemically characterized the fractions corresponding to detergent soluble membranes (DSMs) and detergent resistant membranes (DRMs) from 1:1:1 PC:SM:cholesterol, compared the binding properties of selected peptides to bilayers with the compositions of DSMs and DRMS, used differential scanning calorimetry to identify phase transitions, and determined the structure of DRMs with x-ray diffraction. Compared with the equimolar starting material, DRMs were enriched in both SM and cholesterol. Both transmembrane and interfacial peptides bound to a greater extent to DSM bilayers than to DRM bilayers, likely because of differences in the mechanical properties of the two bilayers. Thermograms from 1:1:1 PC:SM:cholesterol from 3 to 70degreesC showed no evidence for a liquid-ordered to liquid-disordered phase transition. Over a wide range of osmotic stresses, each x-ray pattern from equimolar PC:SM:cholesterol or DRMs contained a broad wide-angle band at 4.5 Angstrom, indicating that the bilayers were in a liquid-crystalline phase, and several sharp low-angle reflections that indexed as orders of a single lamellar repeat period. Electron density profiles showed that the total bilayer thickness was 57 A for DRMs, which was similar to5 Angstrom greater than that of 1:1:1 PC:SM:cholesterol and 10 A greater than the thickness of bilayers; with the composition of DSMs. These x-ray data provide accurate values for the widths of raft and nonraft bilayers that should be important in understanding mechanisms of protein sorting by rafts.
引用
收藏
页码:1469 / 1482
页数:14
相关论文
共 102 条
[1]   On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes [J].
Ahmed, SN ;
Brown, DA ;
London, E .
BIOCHEMISTRY, 1997, 36 (36) :10944-10953
[2]   Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope [J].
Akashi, K ;
Miyata, H ;
Itoh, H ;
Kinosita, K .
BIOPHYSICAL JOURNAL, 1996, 71 (06) :3242-3250
[3]   CONFORMATION OF SPIN-LABELED MELITTIN AT MEMBRANE SURFACES INVESTIGATED BY PULSE SATURATION RECOVERY AND CONTINUOUS WAVE POWER SATURATION ELECTRON-PARAMAGNETIC RESONANCE [J].
ALTENBACH, C ;
FRONCISZ, W ;
HYDE, JS ;
HUBBELL, WL .
BIOPHYSICAL JOURNAL, 1989, 56 (06) :1183-1191
[4]   SORTING AND INTRACELLULAR TRAFFICKING OF A GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN AND 2 HYBRID TRANSMEMBRANE PROTEINS WITH THE SAME ECTODOMAIN IN MADIN-DARBY CANINE KIDNEY EPITHELIAL-CELLS [J].
ARREAZA, G ;
BROWN, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23641-23647
[5]   Annexins in cell membrane dynamics:: Ca2+-regulated association of lipid microdomains [J].
Babiychuk, EB ;
Draeger, A .
JOURNAL OF CELL BIOLOGY, 2000, 150 (05) :1113-1123
[6]   How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? [J].
Baird, B ;
Sheets, ED ;
Holowka, D .
BIOPHYSICAL CHEMISTRY, 1999, 82 (2-3) :109-119
[7]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[8]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[9]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[10]  
Buser CA, 1998, METH MOL B, V84, P267