Mapping Monomeric Threading to Protein-Protein Structure Prediction

被引:51
作者
Guerler, Aysam [1 ]
Govindarajoo, Brandon [1 ]
Zhang, Yang [1 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
DOCKING; ALGORITHM; ALIGNMENTS; POTENTIALS; SIMILARITY; COMPLEXES;
D O I
10.1021/ci300579r
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The key step of template-based protein protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD <2.5 angstrom by SPRING is 134% and 167% higher than these competing methods. SPRING is controlled with ZDOCK on 77 docking benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.
引用
收藏
页码:717 / 725
页数:9
相关论文
共 38 条
[1]   Structure-based assembly of protein complexes in yeast [J].
Aloy, P ;
Böttcher, B ;
Ceulemans, H ;
Leutwein, C ;
Mellwig, C ;
Fischer, S ;
Gavin, AC ;
Bork, P ;
Superti-Furga, G ;
Serrano, L ;
Russell, RB .
SCIENCE, 2004, 303 (5666) :2026-2029
[2]   Interrogating protein interaction networks through structural biology [J].
Aloy, P ;
Russell, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5896-5901
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   Flexible protein-protein docking [J].
Bonvin, AM .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2006, 16 (02) :194-200
[5]   M-TASSER: An algorithm for protein quaternary structure prediction [J].
Chen, Huiling ;
Skolnick, Jeffrey .
BIOPHYSICAL JOURNAL, 2008, 94 (03) :918-928
[6]   ZDOCK: An initial-stage protein-docking algorithm [J].
Chen, R ;
Li, L ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 52 (01) :80-87
[7]   HADDOCK: A protein-protein docking approach based on biochemical or biophysical information [J].
Dominguez, C ;
Boelens, R ;
Bonvin, AMJJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1731-1737
[8]   Dockground resource for studying protein-protein interfaces [J].
Douguet, Dominique ;
Chen, Huei-Chi ;
Tovchigrechko, Andrey ;
Vakser, Ilya A. .
BIOINFORMATICS, 2006, 22 (21) :2612-2618
[9]   Soft protein-protein docking in internal coordinates [J].
Fernández-Recio, J ;
Totrov, M ;
Abagyan, R .
PROTEIN SCIENCE, 2002, 11 (02) :280-291
[10]   Modelling protein docking using shape complementarity, electrostatics and biochemical information [J].
Gabb, HA ;
Jackson, RM ;
Sternberg, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) :106-120