HADDOCK: A protein-protein docking approach based on biochemical or biophysical information

被引:2392
作者
Dominguez, C [1 ]
Boelens, R [1 ]
Bonvin, AMJJ [1 ]
机构
[1] Univ Utrecht, Dept NMr Spect, Bijvoet Ctr Biomol Res, NL-3584 CH Utrecht, Netherlands
关键词
D O I
10.1021/ja026939x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The structure determination of protein-protein complexes is a rather tedious and lengthy process, by both NMR and X-ray crystallography. Several methods based on docking to study protein complexes have also been well developed over the past few years. Most of these approaches are not driven by experimental data but are based on a combination of energetics and shape complementarity. Here, we present an approach called HADDOCK (High Ambiguity Driven protein-protein Docking) that makes use of biochemical and/or biophysical interaction data such as chemical shift perturbation data resulting from NMR titration experiments or mutagenesis data. This information is introduced as Ambiguous Interaction Restraints (AIRS) to drive the docking process. An AIR is defined as an ambiguous distance between all residues shown to be involved in the interaction. The accuracy of our approach is demonstrated with three molecular complexes. For two of these complexes, for which both the complex and the free protein structures have been solved, NMR titration data were available. Mutagenesis data were used in the last example. In all cases, the best structures generated by HADDOCK, that is, the structures with the lowest intermolecular energies, were the closest to the published structure of the respective complexes (within 2.0 Angstrom backbone RMSD).
引用
收藏
页码:1731 / 1737
页数:7
相关论文
共 37 条
[1]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[2]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[3]   Protein-protein association kinetics and protein docking [J].
Camacho, CJ ;
Vajda, S .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (01) :36-40
[4]   MAPPING OF THE BINDING INTERFACES OF THE PROTEINS OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM, HPR AND IIA(GLC) [J].
CHEN, Y ;
REIZER, J ;
SAIER, MH ;
FAIRBROTHER, WJ ;
WRIGHT, PE .
BIOCHEMISTRY, 1993, 32 (01) :32-37
[5]   Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization [J].
Clore, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9021-9025
[6]   TreeDock: A tool for protein docking based on minimizing van der Waals energies [J].
Fahmy, A ;
Wagner, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (07) :1241-1250
[7]   Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system [J].
Garrett, DS ;
Seok, YJ ;
Peterkofsky, A ;
Clore, GM ;
Gronenborn, AM .
BIOCHEMISTRY, 1997, 36 (15) :4393-4398
[8]  
Garrett DS, 1999, NAT STRUCT BIOL, V6, P166
[9]  
Hubbard S.J., 1993, NACCESS
[10]  
JIA ZC, 1993, J BIOL CHEM, V268, P22490