A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence

被引:201
作者
Woo, Nick S. [1 ]
Badger, Murray R. [2 ]
Pogson, Barry J. [1 ]
机构
[1] Australian Natl Univ, Sch Biochem & Mol Biol, Ctr Excellence Plant Energy Biol, Australian Res Council, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Res Sch Biol Sci, Ctr Excellence Plant Energy Biol, Australian Res Council, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1186/1746-4811-4-27
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Analysis of survival is commonly used as a means of comparing the performance of plant lines under drought. However, the assessment of plant water status during such studies typically involves detachment to estimate water shock, imprecise methods of estimation or invasive measurements such as osmotic adjustment that influence or annul further evaluation of a specimen's response to drought. Results: This article presents a procedure for rapid, inexpensive and non-invasive assessment of the survival of soil-grown plants during drought treatment. The changes in major photosynthetic parameters during increasing water deficit were monitored via chlorophyll fluorescence imaging and the selection of the maximum efficiency of photosystem II (F-v/F-m) parameter as the most straightforward and practical means of monitoring survival is described. The veracity of this technique is validated through application to a variety of Arabidopsis thaliana ecotypes and mutant lines with altered tolerance to drought or reduced photosynthetic efficiencies. Conclusion: The method presented here allows the acquisition of quantitative numerical estimates of Arabidopsis drought survival times that are amenable to statistical analysis. Furthermore, the required measurements can be obtained quickly and non-invasively using inexpensive equipment and with minimal expertise in chlorophyll fluorometry. This technique enables the rapid assessment and comparison of the relative viability of germplasm during drought, and may complement detailed physiological and water relations studies.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Chlorophyll fluorescence: A probe of photosynthesis in vivo [J].
Baker, Neil R. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :89-113
[2]   Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities [J].
Baker, NR ;
Rosenqvist, E .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (403) :1607-1621
[3]   Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects [J].
Bhatnagar-Mathur, Pooja ;
Vadez, V. ;
Sharma, Kiran K. .
PLANT CELL REPORTS, 2008, 27 (03) :411-424
[4]   Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions [J].
Bhatnagar-Mathur, Pooja ;
Devi, M. Jyostna ;
Reddy, D. Srinivas ;
Lavanya, M. ;
Vadez, Vincent ;
Serraj, R. ;
Yamaguchi-Shinozaki, K. ;
Sharma, Kiran K. .
PLANT CELL REPORTS, 2007, 26 (12) :2071-2082
[5]   The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses [J].
Catala, Rafael ;
Ouyang, Jian ;
Abreu, Isabel A. ;
Hu, Yuxin ;
Seo, Haksoo ;
Zhang, Xiuren ;
Chua, Nam-Hai .
PLANT CELL, 2007, 19 (09) :2952-2966
[6]   EFFECTS OF WATER DEFICITS ON CARBON ASSIMILATION [J].
CHAVES, MM .
JOURNAL OF EXPERIMENTAL BOTANY, 1991, 42 (234) :1-16
[7]   The yellow variegated mutant of Arabidopsis is plastid autonomous and delayed in chloroplast biogenesis [J].
Chen, M ;
Jensen, M ;
Rodermel, S .
JOURNAL OF HEREDITY, 1999, 90 (01) :207-214
[8]   GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants [J].
Chen, Ming ;
Wang, Qiao-Yan ;
Cheng, Xian-Guo ;
Xu, Zhao-Shi ;
Li, an-Cheng Li ;
Ye, Xing-Guo ;
Xia, Lan-Qin ;
Ma, You-Zhi .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 353 (02) :299-305
[9]   CHLOROPHYLL-ALPHA FLUORESCENCE AND PHOTOSYNTHETIC AND GROWTH-RESPONSES OF PINUS-RADIATA TO PHOSPHORUS DEFICIENCY, DROUGHT STRESS, AND HIGH CO2 [J].
CONROY, JP ;
SMILLIE, RM ;
KUPPERS, M ;
BEVEGE, DI ;
BARLOW, EW .
PLANT PHYSIOLOGY, 1986, 81 (02) :423-429
[10]   EFFECT OF DEHYDRATION AND HIGH LIGHT ON PHOTOSYNTHESIS OF 2 C-3 PLANTS (PHASEOLUS-VULGARIS L AND ELATOSTEMA-REPENS (LOUR) HALL F) [J].
CORNIC, G ;
LEGOUALLEC, JL ;
BRIANTAIS, JM ;
HODGES, M .
PLANTA, 1989, 177 (01) :84-90