Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects

被引:311
作者
Bhatnagar-Mathur, Pooja [1 ]
Vadez, V. [1 ]
Sharma, Kiran K. [1 ]
机构
[1] Int Crops Res Inst Semi Arid Trop, Patancheru 502324, Andhra Pradesh, India
关键词
abiotic stress; drought tolerance; genetic engineering; transcription factors; transpiration efficiency;
D O I
10.1007/s00299-007-0474-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stresses including drought are serious threats to the sustainability of crop yields accounting for more crop productivity losses than any other factor in rainfed agriculture. Success in breeding for better adapted varieties to abiotic stresses depend upon the concerted efforts by various research domains including plant and cell physiology, molecular biology, genetics, and breeding. Use of modern molecular biology tools for elucidating the control mechanisms of abiotic stress tolerance, and for engineering stress tolerant crops is based on the expression of specific stress-related genes. Hence, genetic engineering for developing stress tolerant plants, based on the introgression of genes that are known to be involved in stress response and putative tolerance, might prove to be a faster track towards improving crop varieties. Far beyond the initial attempts to insert "single-action" genes, engineering of the regulatory machinery involving transcription factors has emerged as a new tool now for controlling the expression of many stress-responsive genes. Nevertheless, the task of generating transgenic cultivars is not only limited to the success in the transformation process, but also proper incorporation of the stress tolerance. Evaluation of the transgenic plants under stress conditions, and understanding the physiological effect of the inserted genes at the whole plant level remain as major challenges to overcome. This review focuses on the recent progress in using transgenic technology for the improvement of abiotic stress tolerance in plants. This includes discussion on the evaluation of abiotic stress response and the protocols for testing the transgenic plants for their tolerance under close-to-field conditions.
引用
收藏
页码:411 / 424
页数:14
相关论文
共 152 条
  • [1] Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity
    Abebe, T
    Guenzi, AC
    Martin, B
    Cushman, JC
    [J]. PLANT PHYSIOLOGY, 2003, 131 (04) : 1748 - 1755
  • [2] The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis
    Aharoni, A
    Dixit, S
    Jetter, R
    Thoenes, E
    van Arkel, G
    Pereira, A
    [J]. PLANT CELL, 2004, 16 (09) : 2463 - 2480
  • [3] Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine
    Alia
    Hayashi, H
    Sakamoto, A
    Murata, N
    [J]. PLANT JOURNAL, 1998, 16 (02) : 155 - 161
  • [4] Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase
    Alia
    Kondo, Y
    Sakamoto, A
    Nonaka, H
    Hayashi, H
    Saradhi, PP
    Chen, THH
    Murata, N
    [J]. PLANT MOLECULAR BIOLOGY, 1999, 40 (02) : 279 - 288
  • [5] DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS
    ALLEN, RD
    [J]. PLANT PHYSIOLOGY, 1995, 107 (04) : 1049 - 1054
  • [6] [Anonymous], 2004, FAO production yearbook
  • [7] Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis
    Apse, MP
    Aharon, GS
    Snedden, WA
    Blumwald, E
    [J]. SCIENCE, 1999, 285 (5431) : 1256 - 1258
  • [8] Transgenic approaches to increase dehydration-stress tolerance in plants
    Bajaj, S
    Targolli, J
    Liu, LF
    Ho, THD
    Wu, R
    [J]. MOLECULAR BREEDING, 1999, 5 (06) : 493 - 503
  • [9] Bartlett MJ, 2005, J MATER SCI TECHNOL, V21, P1
  • [10] Behnam B, 2006, PLANT BIOTECHNOL, V23, P169, DOI [DOI 10.5511/PLANTBIOTECHNOLOGY.23.169, DOI 10.1007/S00299-007-0360-5]