Bistability, Epigenetics, and Bet-Hedging in Bacteria

被引:753
作者
Veening, Jan-Willem [1 ,3 ]
Smits, Wiep Klaas [2 ,3 ]
Kuipers, Oscar P. [3 ]
机构
[1] Univ Newcastle, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Mol Genet Grp, NL-9751 NN Haren, Netherlands
基金
英国生物技术与生命科学研究理事会;
关键词
Bacillus subtilis; competence; sporulation; AND gate; phenotypic variation; synthetic biology;
D O I
10.1146/annurev.micro.62.081307.163002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability Phenotypic heterogeneity can be readily obtained by interlinking multiple gene regulatory pathways, effectively resulting in a genetic logic-ANTI gate. Although switching between states can occur within the cells' lifetime, cells can also pass their cellular state over to the next generation by a mechanism known as epigenetic inheritance and thus perpetuate the phenotypic state. Importantly, heterogeneous populations can demonstrate increased fitness compared with homogeneous populations. This suggests that microbial cells employ bet-hedging strategies to maximize survival. Here, we discuss the possible roles of interlinked bistable networks, epigenetic inheritance, and bet-hedging in bacteria.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 107 条
[1]   Enhancement of cellular memory by reducing stochastic transitions [J].
Acar, M ;
Becskei, A ;
van Oudenaarden, A .
NATURE, 2005, 435 (7039) :228-232
[2]   Stochastic switching as a survival strategy in fluctuating environments [J].
Acar, Murat ;
Mettetal, Jerome T. ;
van Oudenaarden, Alexander .
NATURE GENETICS, 2008, 40 (04) :471-475
[3]   Senescence in a bacterium with asymmetric division [J].
Ackermann, M ;
Stearns, SC ;
Jenal, U .
SCIENCE, 2003, 300 (5627) :1920-1920
[4]   Asymmetric inheritance of oxidatively damaged proteins during cytokinesis [J].
Aguilaniu, H ;
Gustafsson, L ;
Rigoulet, M ;
Nyström, T .
SCIENCE, 2003, 299 (5613) :1751-1753
[5]   Thinking about Bacillus subtilis as a multicellular organism [J].
Aguilar, Claudio ;
Vlamakis, Hera ;
Losick, Richard ;
Kolter, Roberto .
CURRENT OPINION IN MICROBIOLOGY, 2007, 10 (06) :638-643
[6]   Rational design of memory in eukaryotic cells [J].
Ajo-Franklin, Caroline M. ;
Drubin, David A. ;
Eskin, Julian A. ;
Gee, Elaine P. S. ;
Landgraf, Dirk ;
Phillips, Ira ;
Silver, Pamela A. .
GENES & DEVELOPMENT, 2007, 21 (18) :2271-2276
[7]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[8]   Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems [J].
Angeli, D ;
Ferrell, JE ;
Sontag, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :1822-1827
[9]   Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities [J].
Artyomov, Maxim N. ;
Das, Jayajit ;
Kardar, Mehran ;
Chakraborty, Arup K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (48) :18958-18963
[10]   Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli [J].
Atkinson, MR ;
Savageau, MA ;
Myers, JT ;
Ninfa, AJ .
CELL, 2003, 113 (05) :597-607