Ordering monomial factors of polynomials in the product representation

被引:7
作者
Bunk, B
Elser, S
Frezzotti, R
Jansen, K
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
[2] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
[3] CERN, CH-1211 Geneva 23, Switzerland
关键词
D O I
10.1016/S0010-4655(99)00198-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The numerical construction of polynomials in the product representation (as used for instance in variants of the multiboson technique) can become problematic if rounding errors induce an imprecise or even unstable evaluation of the polynomial. We give criteria to quantify the effects of these rounding errors on the computation of polynomials approximating the function 1/s. We consider polynomials both in a real variable s and in a Hermitian matrix. By investigating several ordering schemes for the monomials of these polynomials, we finally demonstrate that there exist orderings of the monomials that keep rounding errors at a tolerable level. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 25 条
[1]   Non-hermitian exact local bosonic algorithm for dynamical quarks [J].
Borrelli, A ;
deForcrand, P ;
Galli, A .
NUCLEAR PHYSICS B, 1996, 477 (03) :809-832
[2]   Fast fermion Monte Carlo [J].
deForcrand, P ;
Takaishi, T .
NUCLEAR PHYSICS B, 1997, :968-970
[3]   Progress on lattice QCD algorithms [J].
deForcrand, P .
NUCLEAR PHYSICS B, 1996, :228-235
[4]   HYBRID MONTE-CARLO [J].
DUANE, S ;
KENNEDY, AD ;
PENDLETON, BJ ;
ROWETH, D .
PHYSICS LETTERS B, 1987, 195 (02) :216-222
[5]   Local bosonic versus HMC - a CPU cost comparison [J].
Elser, S ;
Bunk, B .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 :940-942
[6]  
Fox L., 1968, CHEBYSHEV POLYNOMIAL
[7]   A polynomial hybrid Monte Carlo algorithm [J].
Frezzotti, R ;
Jansen, K .
PHYSICS LETTERS B, 1997, 402 (3-4) :328-334
[8]   Experiences with the polynomial Hybrid Monte Carlo algorithm [J].
Frezzotti, R ;
Jansen, K .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 :943-945
[9]  
FREZZOTTI R, UNPUB
[10]   STOCHASTIC QUANTIZATION IN PHASE-SPACE [J].
HOROWITZ, AM .
PHYSICS LETTERS B, 1985, 156 (1-2) :89-92