Microcrystalline silicon grown by VHF PECVD and the fabrication of solar cells

被引:14
作者
Chen, Yongsheng [1 ,2 ]
Wang, Jianhua [3 ]
Lu, Jingxiao [1 ]
Zheng, Wen [1 ]
Gu, Jinhua [1 ]
Yang, Shi-e [1 ]
Gao, Xiaoyong [1 ]
机构
[1] Zhengzhou Univ, Dept Phys, Key Lab Mat Phys, Zhengzhou 450052, Henan, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[3] Wuhan Inst Technol, Dept Mat Sci & Engn, Wuhan 430073, Peoples R China
关键词
Microcrystalline silicon; Solar cells; VHF PECVD; AFM;
D O I
10.1016/j.solener.2008.01.007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Intrinsic microcrystalline silicon has been deposited by very high frequency plasma enhanced chemical vapor deposition technique at frequency of 75 MHz. Different gas mixtures of silane and hydrogen were utilized, and the evolution of microstructure and phase in film were studied, while keeping the substrate temperature at 200 degrees C and the chamber pressure at 0.5 Torr. Optirnised material was inserted in p-i-n solar cells: preliminary efficiency of 5.5% was reached for 1 mu m-thick solar cells with the V-oc around 0.6 V. (C) 2008 Published by Elsevier Ltd.
引用
收藏
页码:1083 / 1087
页数:5
相关论文
共 13 条
[1]  
Chen Yongsheng, 2007, Chinese Journal of Semiconductors, V28, P1005
[2]   Evolution of microstructure and phase in amorphous, protocrystalline, and micro crystalline silicon studied by real time spectroscopic ellipsometry [J].
Collins, RW ;
Ferlauto, AS ;
Ferreira, GM ;
Chen, C ;
Koh, J ;
Koval, RJ ;
Lee, Y ;
Pearce, JM ;
Wronski, CR .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 78 (1-4) :143-180
[3]   Interface-layer formation mechanism in a-Si:H thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy [J].
Fujiwara, H ;
Toyoshima, Y ;
Kondo, M ;
Matsuda, A .
PHYSICAL REVIEW B, 1999, 60 (19) :13598-13604
[4]   ROLE OF MOBILE HYDROGEN IN THE AMORPHOUS-SILICON RECRYSTALLIZATION [J].
GODET, C ;
LAYADI, N ;
CABARROCAS, PRI .
APPLIED PHYSICS LETTERS, 1995, 66 (23) :3146-3148
[5]   Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHFPECVD [J].
Gordijn, A. ;
Hodakova, L. ;
Rath, J. K. ;
Schropp, R. E. I. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) :1868-1871
[6]   N-side illuminated microcrystalline silicon solar cells [J].
Gross, A ;
Vetterl, O ;
Lambertz, A ;
Finger, F ;
Wagner, H ;
Dasgupta, A .
APPLIED PHYSICS LETTERS, 2001, 79 (17) :2841-2843
[7]   Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD [J].
Klein, S ;
Repmann, T ;
Brammer, T .
SOLAR ENERGY, 2004, 77 (06) :893-908
[8]   Microcrystalline silicon solar cells deposited at high rates [J].
Mai, Y ;
Klein, S ;
Carius, R ;
Wolff, J ;
Lambertz, A ;
Finger, F ;
Geng, X .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
[9]   Material and solar cell research in microcrystalline silicon [J].
Shah, A ;
Meier, J ;
Vallat-Sauvain, E ;
Wyrsch, N ;
Kroll, U ;
Droz, C ;
Graf, U .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 78 (1-4) :469-491
[10]   The role of ion-bulk interactions during high rate deposition of microcrystalline silicon by means of the multi-hole-cathode VHF plasma [J].
Smets, A. H. M. ;
Kondo, M. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) :937-940