O2 sensing in the human ductus arteriosus:: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide

被引:34
作者
Archer, SL
Wu, XC
Thébaud, B
Moudgil, R
Hashimoto, K
Michelakis, ED
机构
[1] Univ Alberta, Vasc Biol Grp, Edmonton, AB T6G 2B7, Canada
[2] Univ Alberta, Dept Med Cardiol, Edmonton, AB T6G 2B7, Canada
[3] Univ Alberta, Dept Physiol, Edmonton, AB T6G 2B7, Canada
[4] Univ Alberta, Dept Pediat, Edmonton, AB T6G 2B7, Canada
基金
加拿大创新基金会; 加拿大健康研究院;
关键词
adenoviral gene therapy; Kv channels; laser capture microdissection; mitochondrial electron transport chain; protein chip; redox;
D O I
10.1515/BC.2004.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ductus arteriosus (DA) is a fetal artery that allows blood ejected from the right ventricle to bypass the pulmonary circulation in utero. At birth, functional closure of the DA is initiated by an O-2-induced, vasoconstrictor mechanism which, though modulated by endothelialderived endothelin and prostaglandins, is intrinsic to the smooth muscle cell (DASMC) [Michelakis et al., Circ. Res. 91 (2002); pp. 478486]. As pO(2) increases, a mitochondrial O-2-sensor (electron transport chain complexes I or III) is activated, which generates a diffusible redox mediator (H2O2). H2O2 inhibits voltagegated K+ channels (Kv) in DASMC. The resulting membrane depolarization activates Ltype Ca2+ channels, thereby promoting vasoconstriction. Conversely, inhibiting mitochondrial ETC complexes I or III mimics hypoxia, depolarizing mitochondria, and decreasing H2O2 levels. The resulting increase in K+ current hyperpolarizes the DASMC and relaxes the DA. We have developed two models for study of the DAs O-2-sensor pathway, both characterized by decreased O-2-constriction and Kv expression: (i) preterm rabbit DA, (ii) ionicallyremodeled, human term DA. The O-2-sensitive channels Kv1.5 and Kv2.1 are important to DA O-2-constriction and overexpression of either channel enhances DA constriction in these models. Understanding this O-2-sensing pathway offers therapeutic targets to modulate the tone and patency of human DA in vivo, thereby addressing a common form of congenital heart disease in preterm infants.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 89 条
[1]   Update from the editors [J].
Archer, RP ;
Heaton, RK ;
Morey, LC ;
Sutker, PB .
ASSESSMENT, 1998, 5 (01) :1-2
[2]   The mechanism(s) of hypoxic pulmonary vasoconstriction:: Potassium channels, redox O2 sensors, and controversies [J].
Archer, S ;
Michelakis, E .
NEWS IN PHYSIOLOGICAL SCIENCES, 2002, 17 :131-137
[3]  
ARCHER SL, 1986, HERZ, V11, P127
[4]   DETECTION OF ACTIVATED O-2 SPECIES INVITRO AND IN RAT LUNGS BY CHEMI-LUMINESCENCE [J].
ARCHER, SL ;
NELSON, DP ;
WEIR, EK .
JOURNAL OF APPLIED PHYSIOLOGY, 1989, 67 (05) :1912-1921
[5]   Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5 [J].
Archer, SL ;
London, B ;
Hampl, V ;
Wu, XC ;
Nsair, A ;
Puttagunta, L ;
Hashimoto, K ;
Waite, RE ;
Michelakis, ED .
FASEB JOURNAL, 2001, 15 (08) :1801-+
[6]   SIMULTANEOUS MEASUREMENT OF O-2 RADICALS AND PULMONARY VASCULAR REACTIVITY IN RAT LUNG [J].
ARCHER, SL ;
NELSON, DP ;
WEIR, EK .
JOURNAL OF APPLIED PHYSIOLOGY, 1989, 67 (05) :1903-1911
[7]   A REDOX-BASED O2 SENSOR IN RAT PULMONARY VASCULATURE [J].
ARCHER, SL ;
HUANG, J ;
HENRY, T ;
PETERSON, D ;
WEIR, EK .
CIRCULATION RESEARCH, 1993, 73 (06) :1100-1112
[8]   Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia [J].
Archer, SL ;
Huang, JMC ;
Reeve, HL ;
Hampl, V ;
Tolarova, S ;
Michelakis, E ;
Weir, EK .
CIRCULATION RESEARCH, 1996, 78 (03) :431-442
[9]   Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon [J].
Barja, G ;
Herrero, A .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1998, 30 (03) :235-243
[10]   KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel [J].
Bockenhauer, D ;
Zilberberg, N ;
Goldstein, SAN .
NATURE NEUROSCIENCE, 2001, 4 (05) :486-491