CNT@Fe3O4@C Coaxial Nanocables: One-Pot, Additive-Free Synthesis and Remarkable Lithium Storage Behavior

被引:106
作者
Cheng, Jianli [1 ]
Wang, Bin [1 ,2 ,3 ]
Park, Cheol-Min [4 ]
Wu, Yuping [2 ,3 ]
Huang, Hui [1 ]
Nie, Fude [1 ]
机构
[1] China Acad Engn Phys, New Mat R&D Ctr, Inst Chem Mat, Chengdu 621900, Sichuan, Peoples R China
[2] Fudan Univ, New Energy & Mat Lab, Dept Chem, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[4] Kumoh Natl Inst Technol, Sch Adv Mat & Syst Engn, Gumi 730701, Gyeongbuk, South Korea
关键词
carbon; coaxial nanocables; electrochemistry; lithium-ion batteries; nanotubes; PERFORMANCE ANODE MATERIALS; IN-SITU GROWTH; ION BATTERIES; CARBON NANOTUBES; ELECTROCHEMICAL PERFORMANCE; HOLLOW NANOSPHERES; FACILE APPROACH; METAL-OXIDES; BINDER-FREE; CAPACITY;
D O I
10.1002/chem.201300037
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure-directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one-pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium-ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290mAhg(-1) after 80cycles at a current density of 200mAg(-1), and maintain a reversible capacity of 690mAhg(-1) after 200cycles at a current density of 2000mAg(-1). The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.
引用
收藏
页码:9866 / 9874
页数:9
相关论文
共 68 条
[1]   Catalytic effect of metal oxides on the oxidation resistance in carbon nanotube-inorganic hybrids [J].
Aksel, S. ;
Eder, D. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (41) :9149-9154
[2]  
[Anonymous], ANGEW CHEM
[3]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[4]  
Bruce P.G., 2008, Angew. Chem, V120, P2972
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Better lithium-ion batteries with nanocable-like electrode materials [J].
Cao, Fei-Fei ;
Guo, Yu-Guo ;
Wan, Li-Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1634-1642
[7]   Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem [J].
Cao, Fei-Fei ;
Guo, Yu-Guo ;
Zheng, Shu-Fa ;
Wu, Xing-Long ;
Jiang, Ling-Yan ;
Bi, Rong-Rong ;
Wan, Li-Jun ;
Maier, Joachim .
CHEMISTRY OF MATERIALS, 2010, 22 (05) :1908-1914
[8]   Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes [J].
Cheng, Jianli ;
He, Junpo ;
Li, Changxi ;
Yang, Yuliang .
CHEMISTRY OF MATERIALS, 2008, 20 (13) :4224-4230
[9]   Rapid Synthesis of Li4Ti5O12 Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (32) :16220-16227
[10]   Role of Benzyl Alcohol in Controlling the Growth of TiO2 on Carbon Nanotubes [J].
Cooke, David J. ;
Eder, Dominik ;
Elliott, James A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) :2462-2470