CNT@Fe3O4@C Coaxial Nanocables: One-Pot, Additive-Free Synthesis and Remarkable Lithium Storage Behavior

被引:106
作者
Cheng, Jianli [1 ]
Wang, Bin [1 ,2 ,3 ]
Park, Cheol-Min [4 ]
Wu, Yuping [2 ,3 ]
Huang, Hui [1 ]
Nie, Fude [1 ]
机构
[1] China Acad Engn Phys, New Mat R&D Ctr, Inst Chem Mat, Chengdu 621900, Sichuan, Peoples R China
[2] Fudan Univ, New Energy & Mat Lab, Dept Chem, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[4] Kumoh Natl Inst Technol, Sch Adv Mat & Syst Engn, Gumi 730701, Gyeongbuk, South Korea
关键词
carbon; coaxial nanocables; electrochemistry; lithium-ion batteries; nanotubes; PERFORMANCE ANODE MATERIALS; IN-SITU GROWTH; ION BATTERIES; CARBON NANOTUBES; ELECTROCHEMICAL PERFORMANCE; HOLLOW NANOSPHERES; FACILE APPROACH; METAL-OXIDES; BINDER-FREE; CAPACITY;
D O I
10.1002/chem.201300037
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure-directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one-pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium-ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290mAhg(-1) after 80cycles at a current density of 200mAg(-1), and maintain a reversible capacity of 690mAhg(-1) after 200cycles at a current density of 2000mAg(-1). The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.
引用
收藏
页码:9866 / 9874
页数:9
相关论文
共 68 条
[21]   Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells [J].
Ji, Liwen ;
Tan, Zhongkui ;
Kuykendall, Tevye R. ;
Aloni, Shaul ;
Xun, Shidi ;
Lin, Eric ;
Battaglia, Vincent ;
Zhang, Yuegang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (15) :7170-7177
[22]   Assembly of Carbon-SnO2 Core-Sheath Composite Nanofibers for Superior Lithium Storage [J].
Ji, Liwen ;
Lin, Zhan ;
Guo, Bingkun ;
Medford, Andrew J. ;
Zhang, Xiangwu .
CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (38) :11543-11548
[23]   Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials [J].
Ji, Liwen ;
Medford, Andrew J. ;
Zhang, Xiangwu .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (31) :5593-5601
[24]   Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes [J].
Jin, Shuangling ;
Deng, Honggui ;
Long, Donghui ;
Liu, Xiaojun ;
Zhan, Liang ;
Liang, Xiaoyi ;
Qiao, Wenming ;
Ling, Licheng .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :3887-3893
[25]   Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries [J].
Kang, Eunae ;
Jung, Yoon Seok ;
Cavanagh, Andrew S. ;
Kim, Gi-Heon ;
George, Steven M. ;
Dillon, Anne C. ;
Kim, Jin Kon ;
Lee, Jinwoo .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2430-2438
[26]   A facile approach to the synthesis of high-quality NiO nanorods: electrochemical and antibacterial properties [J].
Kavitha, Thangavelu ;
Yuvaraj, Haldorai .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) :15686-15691
[27]   Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material [J].
Kim, Hyesun ;
Cho, Jaephil .
NANO LETTERS, 2008, 8 (11) :3688-3691
[28]   On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential [J].
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Dollé, M ;
Dupont, L ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (05) :A627-A634
[29]   Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly [J].
Li, Jing ;
Tang, Songbai ;
Lu, Li ;
Zeng, Hua Chun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (30) :9401-9409
[30]   Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries [J].
Liu, Hao ;
Wang, Guoxiu ;
Wang, Jiazhao ;
Wexler, David .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1879-1882