Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells

被引:240
作者
Ji, Liwen [1 ]
Tan, Zhongkui [1 ]
Kuykendall, Tevye R. [1 ]
Aloni, Shaul [1 ]
Xun, Shidi [2 ]
Lin, Eric [1 ]
Battaglia, Vincent [2 ]
Zhang, Yuegang [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Energy Technol Dept, Berkeley, CA 94720 USA
关键词
NANOSTRUCTURED ELECTRODE MATERIALS; ANODE MATERIAL; REVERSIBLE CAPACITY; OXIDE; COMPOSITE; BATTERIES; HYBRID; NANOMATERIALS; NANOFIBERS; PARTICLES;
D O I
10.1039/c1cp20455f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We synthesized Fe3O4 nanoparticle/reduced graphene oxide (RGO-Fe3O4) nanocomposites and evaluated their performance as anodes in both half and full coin cells. The nanocomposites were synthesized through a chemical co-precipitation of Fe2+ and Fe3+ in the presence of graphene oxides within an alkaline solution and a subsequent high-temperature reduction reaction in argon (Ar) environment. The morphology and microstructures of the fabricated RGO-Fe3O4 nanocomposites were characterized using various techniques. The results indicated that the Fe3O4 nanoparticles had relatively homogeneous dispersions on the RGO sheet surfaces. These as-synthesized RGO-Fe3O4 nanocomposites were used as anodes for both half and full lithium-ion cells. Electrochemical measurement results exhibit a high reversible capacity which is about two and a half times higher than that of graphite-based anodes at a 0.05C rate, and an enhanced reversible capacity of about 200 mAh g(-1) even at a high charge/discharge rate of 10C (9260 mA g(-1)) in half cells. Most important of all, these fabricated novel nanostructures also show exceptional capacity retention with the assembled RGO-Fe3O4/LiNi1/3Mn1/3Co1/3O2 full cell at different C rates. This outstanding electrochemical behavior can be attributed to the unique microstructure, morphology, texture, surface properties of the nanocomposites, and combinative effects from the different chemical composition in the nanocomposites.
引用
收藏
页码:7170 / 7177
页数:8
相关论文
共 59 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[4]   Nanoscale design to enable the revolution in renewable energy [J].
Baxter, Jason ;
Bian, Zhixi ;
Chen, Gang ;
Danielson, David ;
Dresselhaus, Mildred S. ;
Fedorov, Andrei G. ;
Fisher, Timothy S. ;
Jones, Christopher W. ;
Maginn, Edward ;
Kortshagen, Uwe ;
Manthiram, Arumugam ;
Nozik, Arthur ;
Rolison, Debra R. ;
Sands, Timothy ;
Shi, Li ;
Sholl, David ;
Wu, Yiying .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (06) :559-588
[5]   Graphene electrochemistry: an overview of potential applications [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2010, 135 (11) :2768-2778
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[8]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[9]   Template-directed materials for rechargeable lithium-ion batteries [J].
Cheng, Fangyi ;
Tao, Zhanliang ;
Liang, Jing ;
Chen, Jun .
CHEMISTRY OF MATERIALS, 2008, 20 (03) :667-681
[10]   Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage [J].
Choi, Daiwon ;
Wang, Donghai ;
Viswanathan, Vish V. ;
Bae, In-Tae ;
Wang, Wei ;
Nie, Zimin ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Liu, Jun ;
Yang, Zhenguo ;
Duong, Tien .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) :378-381