Honeycomb Carbon: A Review of Graphene

被引:5934
作者
Allen, Matthew J. [1 ,2 ]
Tung, Vincent C. [2 ,3 ]
Kaner, Richard B. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
SCANNING-TUNNELING-MICROSCOPY; SIDEWALL FUNCTIONALIZATION; GRAPHITE OXIDE; ELECTRONIC-PROPERTIES; AQUEOUS DISPERSIONS; EPITAXIAL GRAPHENE; CHEMICAL ROUTE; RAMAN-SPECTRA; BERRYS PHASE; LARGE-AREA;
D O I
10.1021/cr900070d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene is the name given to a two-dimensional sheet of sp 2-hybridized carbon. Its extended honeycomb network is the basic building block of other important allotropes; it can be stacked to form 3D graphite, rolled to form 1D nanotubes, and wrapped to form 0D fullerenes. Substrate-based growth of single layers by chemical vapor deposition (CVD) or the reduction of silicon carbide relies on the ability to walk a narrow thermodynamic tightrope. Graphite has a rich chemistry in which it can participate in reactions as either a reducing agent (electron donor) or an oxidizer (electron acceptor). Solution processing of chemically derived graphene and the depositions achieved soon led researchers to consider using the material in transparent conductors. The graphite oxide has produced the first chemically derived micrometer-scale graphene, synthetic techniques for smaller planar, benzene-based macromolecules.
引用
收藏
页码:132 / 145
页数:14
相关论文
共 126 条
  • [1] Experimental evidence of a single nano-graphene
    Affoune, AM
    Prasad, BLV
    Sato, H
    Enoki, T
    Kaburagi, Y
    Hishiyama, Y
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 348 (1-2) : 17 - 20
  • [2] The use of nanocrystals in biological detection
    Alivisatos, P
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (01) : 47 - 52
  • [3] Temperature dependent Raman spectroscopy of chemically derived graphene
    Allen, Matthew J.
    Fowler, Jesse D.
    Tung, Vincent C.
    Yang, Yang
    Weiller, Bruce H.
    Kaner, Richard B.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [4] A STUDY OF GRAPHITE SURFACE WITH STM AND ELECTRONIC-STRUCTURE CALCULATIONS
    BATRA, IP
    GARCIA, N
    ROHRER, H
    SALEMINK, H
    STOLL, E
    CIRACI, S
    [J]. SURFACE SCIENCE, 1987, 181 (1-2) : 126 - 138
  • [5] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [6] Magnetotransport in high mobility epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiasong
    Brown, Nate
    Maud, Duncan
    Naud, Cecile
    de Heer, Walt A.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (06): : 1746 - 1750
  • [7] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [8] Polyphenylene nanostructures
    Berresheim, AJ
    Müller, M
    Müllen, K
    [J]. CHEMICAL REVIEWS, 1999, 99 (07) : 1747 - 1785
  • [9] Making graphene visible
    Blake, P.
    Hill, E. W.
    Castro Neto, A. H.
    Novoselov, K. S.
    Jiang, D.
    Yang, R.
    Booth, T. J.
    Geim, A. K.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [10] Graphene-based liquid crystal device
    Blake, Peter
    Brimicombe, Paul D.
    Nair, Rahul R.
    Booth, Tim J.
    Jiang, Da
    Schedin, Fred
    Ponomarenko, Leonid A.
    Morozov, Sergey V.
    Gleeson, Helen F.
    Hill, Ernie W.
    Geim, Andre K.
    Novoselov, Kostya S.
    [J]. NANO LETTERS, 2008, 8 (06) : 1704 - 1708