Local rigidity of certain classes of almost Kahler 4-manifolds

被引:17
作者
Apostolov, V
Armstrong, J
Draghici, T
机构
[1] UQAM, Dept Math, Montreal, PQ H3C 3P8, Canada
[2] Florida Int Univ, Dept Math, Miami, FL 33199 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
almost Kahler 4-manifolds; 3-symmetric spaces; curvature conditions of Gray;
D O I
10.1023/A:1014779405043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any non-Kahler, almost Kahler 4-manifold for which both the Ricci and the Weyl curvatures have the same algebraic symmetries as they have for a Kahler metric is locally isometric to the (only) proper 3-symmetric four-dimensional space.
引用
收藏
页码:151 / 176
页数:26
相关论文
共 29 条
[1]   Symplectic 4-manifolds with Hermitian Weyl tensor [J].
Apostolov, V ;
Armstrong, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4501-4513
[2]   An integrability theorem for almost Kahler 4-manifolds [J].
Apostolov, V ;
Draghici, T ;
Kotschick, D .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05) :413-418
[3]   The Riemannian Goldberg-Sachs theorem [J].
Apostolov, V ;
Gauduchon, P .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (04) :421-439
[4]   Almost Kahler 4-manifolds with J-invariant Ricci tensor and special Weyl tensor [J].
Apostolov, V ;
Draghici, T .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :275-294
[5]  
Armstrong J, 1997, Q J MATH, V48, P405
[6]  
ARMSTRONG J, 1998, THESIS OXFORD
[7]  
ARMSTRONG J, IN PRESS J REINE ANG
[8]  
Barth W., 1984, COMPACT COMPLEX SURF
[9]  
Blair D.E., 1991, P 3 C GEOM THESS, P79
[10]  
Blair DE., 1986, Contemp. Math, V51, P23, DOI [10.1090/conm/051/848929, DOI 10.1090/CONM/051/848929]