Chaotic tracer scattering and fractal basin boundaries in a blinking vortex-sink system

被引:43
作者
Karolyi, G [1 ]
Tel, T [1 ]
机构
[1] EOTVOS LORAND UNIV, INST THEORET PHYS, H-1088 BUDAPEST, HUNGARY
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 1997年 / 290卷 / 1-2期
关键词
D O I
10.1016/S0370-1573(97)00063-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider passive tracer advection in a model of a large planar basin of fluid with two sinks opened alternately. In spite of the incompressibility of the fluid, the phase space of the tracer dynamics contains (simple) attractors, the sinks. We show that the advection is chaotic due to the appearance of a locally Hamiltonian chaotic saddle. Properties of this saddle and its invariant manifolds are investigated, and fractal and dynamical characteristics of the tracer patterns are extracted by means of the thermodynamical formalism applied to the time-delay function.
引用
收藏
页码:125 / 147
页数:23
相关论文
共 74 条
[1]  
[Anonymous], 1992, ANNU REV FLUID MECH
[2]   STIRRING BY CHAOTIC ADVECTION [J].
AREF, H .
JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) :1-21
[3]   CHAOTIC ADVECTION IN A STOKES-FLOW [J].
AREF, H ;
BALACHANDAR, S .
PHYSICS OF FLUIDS, 1986, 29 (11) :3515-3521
[4]   VORTICES, KINEMATICS AND CHAOS [J].
AREF, H ;
JONES, SW ;
MOFINA, S ;
ZAWADZKI, I .
PHYSICA D, 1989, 37 (1-3) :423-440
[5]   CHAOTIC ADVECTION IN POINT VORTEX MODELS AND 2-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BOFFETTA, G ;
PROVENZALE, A ;
VULPIANI, A .
PHYSICS OF FLUIDS, 1994, 6 (07) :2465-2474
[6]  
Beck C., 1993, THERMODYNAMICS CHAOT
[7]   INVARIANT MANIFOLD TEMPLATES FOR CHAOTIC ADVECTION [J].
BEIGIE, D ;
LEONARD, A ;
WIGGINS, S .
CHAOS SOLITONS & FRACTALS, 1994, 4 (06) :749-868
[8]   STATISTICAL RELAXATION UNDER NONTURBULENT CHAOTIC FLOWS - NON-GAUSSIAN HIGH-STRETCH TAILS OF FINITE-TIME LYAPUNOV EXPONENT DISTRIBUTIONS [J].
BEIGIE, D ;
LEONARD, A ;
WIGGINS, S .
PHYSICAL REVIEW LETTERS, 1993, 70 (03) :275-278
[9]  
BENE J, 1989, PHYS REV A, V40, P4767
[10]   BIFURCATION TO CHAOTIC SCATTERING [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E .
PHYSICA D, 1990, 46 (01) :87-121