Variable time step integration with symplectic methods

被引:72
作者
Hairer, E
机构
[1] Section de Mathématiques, Université de Genève
关键词
Hamiltonian systems; symplectic integration; variable step sizes; backward error analysis; Kepler's problem; Verlet scheme;
D O I
10.1016/S0168-9274(97)00061-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symplectic methods for Hamiltonian systems are known to have favorable properties concerning long-time integrations (no secular terms in the error of the energy integral, linear error growth in the angle variables instead of quadratic growth, comet qualitative behaviour) if they are applied with constant step sizes, while all of these properties are lost in a standard variable step size implementation. In this article we present a ''meta-algorithm'' which allows us to combine the use of variable steps with symplectic integrators, without destroying the above mentioned favorable properties. We theoretically justify the algorithm by a backward error analysis, and illustrate its performance by numerical experiments. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 20 条
[1]  
[Anonymous], ANN NUMER MATH
[2]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[3]   SYMPLECTIC INTEGRATORS FOR LONG-TERM INTEGRATIONS IN CELESTIAL MECHANICS [J].
Gladman, Brett ;
Duncan, Martin ;
Candy, Jeff .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (03) :221-240
[4]   Reversible long-term integration with variable stepsizes [J].
Hairer, E ;
Stoffer, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :257-269
[5]   The life-span of backward error analysis for numerical integrators [J].
Hairer, E ;
Lubich, C .
NUMERISCHE MATHEMATIK, 1997, 76 (04) :441-462
[6]  
Hairer E., 1994, ANN NUMER MATH, V1, P107
[7]   The adaptive Verlet method [J].
Huang, WZ ;
Leimkuhler, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :239-256
[8]   BUILDING A BETTER LEAPFROG [J].
HUT, P ;
MAKINO, J ;
MCMILLAN, S .
ASTROPHYSICAL JOURNAL, 1995, 443 (02) :L93-L96
[9]   On the regulation of the problem of three bodies [J].
Levi-Civita, T .
ACTA MATHEMATICA, 1920, 42 (01) :99-144
[10]  
Levi-Civita T., 1906, Acta Math, V30, P305, DOI [10.1007/BF02418577, DOI 10.1007/BF02418577]