Convexification, concavification and monotonization in global optimization

被引:20
作者
Li, D [1 ]
Sun, XL
Biswal, MP
Gao, F
机构
[1] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[3] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
基金
中国国家自然科学基金;
关键词
global optimization; monotonic function; convexification; concavification; monotonization; concave minimization; DC programming;
D O I
10.1023/A:1013313901854
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show in this paper that via certain convexification, concavification and monotonization schemes a nonconvex optimization problem over a simplex can be always converted into an equivalent better-structured nonconvex optimization problem, e.g., a concave optimization problem or a D.C. programming problem, thus facilitating the search of a global optimum by using the existing methods in concave minimization and D.C. programming. We first prove that a monotone optimization problem (with a monotone objective function and monotone constraints) can be transformed into a concave minimization problem over a convex set or a D.C. programming problem via pth. power transformation. We then prove that a class of nonconvex minimization problems can be always reduced to a monotone optimization problem, thus a concave minimization problem or a D.C. programming problem.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1987, CONSTRAINED GLOBAL O
[2]   TRUST: A deterministic algorithm for global optimization [J].
Barhen, J ;
Protopopescu, V ;
Reister, D .
SCIENCE, 1997, 276 (5315) :1094-1097
[3]   TABOO SEARCH - AN APPROACH TO THE MULTIPLE MINIMA PROBLEM [J].
CVIJOVIC, D ;
KLINOWSKI, J .
SCIENCE, 1995, 267 (5198) :664-666
[4]  
GE R, 1990, MATH PROGRAM, V46, P191
[5]   A METHOD FOR GLOBALLY MINIMIZING CONCAVE FUNCTIONS OVER CONVEX-SETS [J].
HOFFMAN, KL .
MATHEMATICAL PROGRAMMING, 1981, 20 (01) :22-32
[6]   ON THE CONVEXIFICATION OF NONLINEAR-PROGRAMMING PROBLEMS - AN APPLICATIONS-ORIENTED SURVEY [J].
HORST, R .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1984, 15 (03) :382-392
[7]  
HORST R, 1996, INTRO GLOBAL OPTIMIZ
[8]  
Horst R., 1993, GLOBAL OPTIMIZATION, V2nd
[9]   Convexification of a noninferior frontier [J].
Li, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 88 (01) :177-196
[10]   ZERO DUALITY GAP FOR A CLASS OF NONCONVEX OPTIMIZATION PROBLEMS [J].
LI, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 85 (02) :309-324