ZERO DUALITY GAP FOR A CLASS OF NONCONVEX OPTIMIZATION PROBLEMS

被引:79
作者
LI, D
机构
[1] Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong, Shatin, New Territories
关键词
NONCONVEX OPTIMIZATION; NONLINEAR PROGRAMMING; SADDLE POINTS; DUALITY; PRIMAL-DUAL METHODS;
D O I
10.1007/BF02192229
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
By an equivalent transformation using the pth power of the objective function and the constraint, a saddle point can be generated for a general class of nonconvex optimization problems. Zero duality gap is thus guaranteed when the primal-dual method is applied to the constructed equivalent form.
引用
收藏
页码:309 / 324
页数:16
相关论文
共 7 条
[1]  
[Anonymous], 2016, LINEAR NONLINEAR PRO
[2]   MULTIPLIER METHODS - SURVEY [J].
BERTSEKAS, DP .
AUTOMATICA, 1976, 12 (02) :133-145
[3]   CONVEXIFICATION PROCEDURES AND DECOMPOSITION METHODS FOR NON-CONVEX OPTIMIZATION PROBLEMS [J].
BERTSEKAS, DP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 29 (02) :169-197
[4]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[5]  
LASDON L, 1970, OPTIMIZATION THEORY
[6]   The Multiplier Method of Hestenes and Powell Applied to Convex Programming [J].
Rockafellar, R. T. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 12 (06) :555-562
[7]   A NEW TECHNIQUE FOR NONCONVEX PRIMAL DUAL DECOMPOSITION OF A LARGE-SCALE SEPARABLE OPTIMIZATION PROBLEM [J].
TANIKAWA, A ;
MUKAI, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (02) :133-143