An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems

被引:74
作者
Bai, ZJ
Demmel, J
Gu, M
机构
[1] UNIV CALIF BERKELEY,DIV COMP SCI,BERKELEY,CA 94720
[2] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
[3] UNIV KENTUCKY,DEPT MATH,LEXINGTON,KY 40506
[4] UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,BERKELEY,CA 94720
关键词
D O I
10.1007/s002110050264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss an inverse-free, highly parallel, spectral divide and conquer algorithm. It can compute either an invariant subspace of a nonsymmetric matrix A, or a pair of left and right deflating subspaces of a regular matrix pencil A - lambda B. This algorithm is based on earlier ones of Bulgakov, Godunov and Malyshev, but improves on them in several ways. This algorithm only uses easily parallelizable linear algebra building blocks: matrix multiplication and QR decomposition, but not matrix inversion. Similar parallel algorithms for the nonsymmetric eigenproblem use the matrix sign function, which requires matrix inversion and is faster but can be less stable than the new algorithm.
引用
收藏
页码:279 / 308
页数:30
相关论文
共 53 条
[41]  
MALYSHEV AN, 1989, SIBERIAN MATH J+, V30, P559
[42]  
Malyshev AN., 1992, Sib Adv Math, V2, P144
[43]  
Malyshev AN., 1992, Sib Adv Math, V2, P153
[44]  
PAIGE C, 1990, RELIABLE NUMERICAL C
[45]  
PARLETT BN, 1980, SYMMETRIC EIGENVALUE
[47]   JACOBI AND JACOBI-LIKE ALGORITHMS FOR A PARALLEL COMPUTER [J].
SAMEH, AH .
MATHEMATICS OF COMPUTATION, 1971, 25 (115) :579-&
[48]  
SHROFF GM, 1991, NUMER MATH, V58, P779
[49]  
Stewart G., 1990, MATRIX PERTURBATION
[50]   ERROR AND PERTURBATION BOUNDS FOR SUBSPACES ASSOCIATED WITH CERTAIN EIGENVALUE PROBLEMS [J].
STEWART, GW .
SIAM REVIEW, 1973, 15 (04) :727-764