Band Structure Engineering of Carbon Nitride: In Search of a Polymer Photocatalyst with High Photooxidation Property

被引:467
作者
Chu, Sheng [1 ,2 ,3 ]
Wang, Ying [1 ,2 ,3 ]
Guo, Yong [4 ]
Feng, Jianyong [1 ]
Wang, Cuicui [1 ,2 ,3 ]
Luo, Wenjun [1 ]
Fan, Xiaoxing [1 ]
Zou, Zhigang [1 ,2 ,3 ]
机构
[1] Nanjing Univ, ERERC, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Kunshan Innovat Inst, Kunshan 215347, Peoples R China
[4] Nanjing Univ, Sch Environm, Nanjing 210093, Jiangsu, Peoples R China
来源
ACS CATALYSIS | 2013年 / 3卷 / 05期
关键词
polyimide; photocatalysis; band structure; water splitting; dye degradation; VISIBLE-LIGHT IRRADIATION; SOLID-STATE NMR; HYDROGEN-PRODUCTION; OXYGEN EVOLUTION; WATER-OXIDATION; G-C3N4; SEMICONDUCTOR; CATALYST; PHOTODEGRADATION; DEGRADATION;
D O I
10.1021/cs4000624
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electronic: band structure of a semiconductor photocatalyst intrinsically controls its level of conduction band (CB) and valence band (VB) and, thus, influences its activity for different photocatalytic reactions. Here, we report a simple bottom-up, strategy to rationally tune the band structure of graphitic carbon nitride (g-C3N4). By incorporating electron-deficient pyromellitic dianhydride (PMDA) monomer into the network of g-C3N4, the,VB position can be largely decreased and, thus, gives a strong photooxidation capability. Consequently, the modified photocatalyst shows preferential activity for water, oxidation over water reduction in comparison with g-C3N4. More strikingly, the active species involved in the photodegradation of methyl orange switches from photogenerated electrons to holes after band structure engineering. This Work may provide guidance on designing efficient polymer photocatalysts with the desirable electronic structure for specific photoreactions.
引用
收藏
页码:912 / 919
页数:8
相关论文
共 56 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   Homogeneous Photocatalytic Oxidation of Alcohols by a Chromophore-Catalyst Dyad of Ruthenium Complexes [J].
Chen, Weizhong ;
Rein, Francisca N. ;
Rocha, Reginaldo C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (51) :9672-9675
[3]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[4]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[5]   5,6,11,12-Tetrachlorotetracene, a tetracene derivative with π-stacking structure:: The synthesis, crystal structure and transistor properties [J].
Chi, Xialiou ;
Li, Dawen ;
Zhang, Huaqiang ;
Chen, Yongsheng ;
Garcia, Vanessa ;
Garcia, Celina ;
Siegrist, Theo .
ORGANIC ELECTRONICS, 2008, 9 (02) :234-240
[6]   THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (51) :13669-13679
[7]   Facile green synthesis of crystalline polyimide photocatalyst for hydrogen generation from water [J].
Chu, Sheng ;
Wang, Ying ;
Guo, Yong ;
Zhou, Peng ;
Yu, He ;
Luo, Leilei ;
Kong, Fei ;
Zou, Zhigang .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (31) :15519-15521
[8]   Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants [J].
Cui, Yanjuan ;
Ding, Zhengxin ;
Liu, Ping ;
Antonietti, Markus ;
Fu, Xianzhi ;
Wang, Xinchen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (04) :1455-1462
[9]  
Duan LL, 2012, NAT CHEM, V4, P418, DOI [10.1038/nchem.1301, 10.1038/NCHEM.1301]
[10]   Hydrogen production by molecular photocatalysis [J].
Esswein, Arthur J. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2007, 107 (10) :4022-4047