Computational methods for trajectory inference from single-cell transcriptomics

被引:127
作者
Cannoodt, Robrecht [1 ,2 ,3 ,4 ]
Saelens, Wouter [1 ,2 ]
Saeys, Yvan [1 ,2 ]
机构
[1] VIB Inflammat Res Ctr, Data Min & Modelling Biomed Grp, Technol Pk 927, B-9052 Ghent, Belgium
[2] Univ Ghent, Dept Internal Med, Ghent, Belgium
[3] Univ Ghent, Ctr Med Genet, Ghent, Belgium
[4] Canc Res Inst Ghent, Ghent, Belgium
关键词
Bioinformatics; Cell differentiation; Single-cell transcriptomics; GENE-EXPRESSION; FATE DECISIONS; STEM-CELLS; RNA-SEQ; NETWORK MOTIFS; MASS CYTOMETRY; T-CELL; DYNAMICS; LINEAGE; DIFFERENTIATION;
D O I
10.1002/eji.201646347
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Recent developments in single-cell transcriptomics have opened new opportunities for studying dynamic processes in immunology in a high throughput and unbiased manner. Starting from a mixture of cells in different stages of a developmental process, unsupervised trajectory inference algorithms aim to automatically reconstruct the underlying developmental path that cells are following. In this review, we break down the strategies used by this novel class of methods, and organize their components into a common framework, highlighting several practical advantages and disadvantages of the individual methods. We also give an overview of new insights these methods have already provided regarding the wiring and gene regulation of cell differentiation. As the trajectory inference field is still in its infancy, we propose several future developments that will ultimately lead to a global and data-driven way of studying immune cell differentiation.
引用
收藏
页码:2496 / 2506
页数:11
相关论文
共 94 条
[1]   Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential:: A revised road map for adult blood lineage commitment [J].
Adolfsson, J ;
Månsson, R ;
Buza-Vidas, N ;
Hultquist, A ;
Liuba, K ;
Jensen, CT ;
Bryder, D ;
Yang, LP ;
Borge, OJ ;
Thoren, LAM ;
Anderson, K ;
Sitnicka, E ;
Sasaki, Y ;
Sigvardsson, M ;
Jacobsen, SEW .
CELL, 2005, 121 (02) :295-306
[2]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[3]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[4]   Multiplexed ion beam imaging of human breast tumors [J].
Angelo, Michael ;
Bendall, Sean C. ;
Finck, Rachel ;
Hale, Matthew B. ;
Hitzman, Chuck ;
Borowsky, Alexander D. ;
Levenson, Richard M. ;
Lowe, John B. ;
Liu, Scot D. ;
Zhao, Shuchun ;
Natkunam, Yasodha ;
Nolan, Garry P. .
NATURE MEDICINE, 2014, 20 (04) :436-+
[5]   Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses [J].
Arsenio, Janilyn ;
Kakaradov, Boyko ;
Metz, Patrick J. ;
Kim, Stephanie H. ;
Yeo, Gene W. ;
Chang, John T. .
NATURE IMMUNOLOGY, 2014, 15 (04) :365-+
[6]   Design and computational analysis of single-cell RNA-sequencing experiments [J].
Bacher, Rhonda ;
Kendziorski, Christina .
GENOME BIOLOGY, 2016, 17
[7]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[8]   How to infer gene networks from expression profiles [J].
Bansal, Mukesh ;
Belcastro, Vincenzo ;
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[9]   STUDY DESIGNS Studying and modelling dynamic biological processes using time-series gene expression data [J].
Bar-Joseph, Ziv ;
Gitter, Anthony ;
Simon, Itamar .
NATURE REVIEWS GENETICS, 2012, 13 (08) :552-564
[10]   High-dimensional analysis of the murine myeloid cell system [J].
Becher, Burkhard ;
Schlitzer, Andreas ;
Chen, Jinmiao ;
Mair, Florian ;
Sumatoh, Hermi R. ;
Teng, Karen Wei Weng ;
Low, Donovan ;
Ruedl, Christiane ;
Riccardi-Castagnoli, Paola ;
Poidinger, Michael ;
Greter, Melanie ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE IMMUNOLOGY, 2014, 15 (12) :1181-1189