AGE-OF-INFECTION AND THE FINAL SIZE RELATION

被引:41
作者
Brauer, Fred [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
epidemic models; basic reproduction number; final size relation; age of infection;
D O I
10.3934/mbe.2008.5.681
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish the final size equation for a general age-of-infection epidemic model in a new simpler form if there are no disease deaths (total population size remains constant). If there are disease deaths, the final size relation is an inequality but we obtain an estimate for the final epidemic size.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 10 条
[1]   A final size relation for epidemic models [J].
Arino, Julien ;
Brauer, Fred ;
van den Driessche, P. ;
Watmough, James ;
Wu, Jianhong .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2007, 4 (02) :159-175
[2]   The Kermack-McKendrick epidemic model revisited [J].
Brauer, F .
MATHEMATICAL BIOSCIENCES, 2005, 198 (02) :119-131
[3]  
Diekmann O., 2000, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation
[4]   Final and peak epidemic sizes for SEIR models with quarantine and isolation [J].
Feng, Zhilan .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2007, 4 (04) :675-686
[5]   Epidemiological models with non-exponentially distributed disease stages and applications to disease control [J].
Feng, Zhilan ;
Xu, Dashun ;
Zhao, Haiyun .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (05) :1511-1536
[6]   Perspectives on the basic reproductive ratio [J].
Heffernan, JM ;
Smith, RJ ;
Wahl, LM .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2005, 2 (04) :281-293
[7]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[8]   Generality of the final size formula for an epidemic of a newly invading infectious disease [J].
Ma, Junling ;
Earn, David J. D. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (03) :679-702
[9]   Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission [J].
van den Driessche, P ;
Watmough, J .
MATHEMATICAL BIOSCIENCES, 2002, 180 :29-48
[10]  
Yang CK, 2008, MATH BIOSCI ENG, V5, P585