NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA

被引:74
作者
Klein, C
Planker, E
Diercks, T
Kessler, H
Künkele, KP
Lang, K
Hansen, S [1 ]
Schwaiger, M
机构
[1] Roche Diagnost GmbH, Pharma Res, D-82372 Penzberg, Germany
[2] Max Planck Inst Biochem, Abt Strukturforsch, D-82152 Martinsried, Germany
[3] Novaspin Biotech GmbH, D-85748 Garching, Germany
[4] Tech Univ Munich, Inst Organ Chem & Biochem, D-85747 Garching, Germany
关键词
D O I
10.1074/jbc.M107516200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The p53 protein is a transcription factor that acts as the major tumor suppressor in mammals. The core DNA-binding domain is mutated in about 50%, of all human tumors. The crystal structure of the core domain in complex with DNA illustrated how a single core domain specifically interacts with its DNA consensus site and how it is inactivated by mutation. However, no structural information for the tetrameric full-length p53-DNA complex is available. Here, we present novel experimental insight into the dimerization of two p53 core domains upon cooperative binding to consensus DNA in solution obtained by NMR. The NMR data show that the p53 core domain itself does not appear to undergo major conformational changes upon addition of DNA and elucidate the dimerization interface between two DNA-bound core domains, which includes the short HI helix. A NMR-based model for the dimeric p53 core-DNA complex incorporates these data and allows the conclusion that the dimerization interface also forms the actual interface in the tetrameric p53-DNA complex. The significance of this interface is further corroborated by the finding that hot spot mutations map to the HI helix, and by the binding of the putative p53 inhibitor 53BP2 to this region via one of its ankyrin repeats. Based on symmetry considerations it is proposed that tetrameric p53 might link non-contigous DNA consensus sites in a sandwich-like manner generating DNA loops as observed for transcriptionally active p53 complexes.
引用
收藏
页码:49020 / 49027
页数:8
相关论文
共 98 条
[1]   The C-terminus of p53: the more you learn the less you know [J].
Ahn, J ;
Prives, C .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (09) :730-732
[2]   GENETIC-ANALYSIS OF THE LEUCINE HEPTAD REPEATS OF LAC REPRESSOR - EVIDENCE FOR A 4-HELICAL BUNDLE [J].
ALBERTI, S ;
OEHLER, S ;
VONWILCKENBERGMANN, B ;
MULLERHILL, B .
EMBO JOURNAL, 1993, 12 (08) :3227-3236
[3]   ASSOCIATION OF BIOMOLECULAR SYSTEMS VIA PULSED-FIELD GRADIENT NMR SELF-DIFFUSION MEASUREMENTS [J].
ALTIERI, AS ;
HINTON, DP ;
BYRD, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (28) :7566-7567
[4]   Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: Implications for regulation [J].
Anderson, ME ;
Woelker, B ;
Reed, M ;
Wang, P ;
Tegtmeyer, P .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (11) :6255-6264
[5]  
Appella E, 1998, J PROTEIN CHEM, V17, P527
[6]   Structure and function in the p53 family [J].
Arrowsmith, CH .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (12) :1169-1173
[7]  
Arrowsmith CH, 1996, ONCOGENE, V12, P1379
[8]   Latent and active p53 are identical in conformation [J].
Ayed, A ;
Mulder, FAA ;
Yi, GS ;
Lu, Y ;
Kay, LE ;
Arrowsmith, CH .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (09) :756-760
[9]   4 P53 DNA-BINDING DOMAIN PEPTIDES BIND NATURAL P53-RESPONSE ELEMENTS AND BEND THE DNA [J].
BALAGURUMOORTHY, P ;
SAKAMOTO, H ;
LEWIS, MS ;
ZAMBRANO, N ;
CLORE, GM ;
GRONENBORN, AM ;
APPELLA, E ;
HARRINGTON, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8591-8595
[10]   A PROTEOLYTIC FRAGMENT FROM THE CENTRAL REGION OF P53 HAS MARKED SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY WHEN GENERATED FROM WILD-TYPE BUT NOT FROM ONCOGENIC MUTANT P53-PROTEIN [J].
BARGONETTI, J ;
MANFREDI, JJ ;
CHEN, XB ;
MARSHAK, DR ;
PRIVES, C .
GENES & DEVELOPMENT, 1993, 7 (12B) :2565-2574