Hybrid particle swarm optimization with wavelet mutation and its industrial applications

被引:201
作者
Ling, S. H. [1 ]
Iu, H. H. C. [2 ]
Chan, K. Y. [3 ]
Lam, H. K. [4 ]
Yeung, Benny C. W. [5 ]
Leung, Frank H. [5 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Univ Western Australia, Sch Elect Elect & Comp Engn, Perth, WA 6009, Australia
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Kowloon, Hong Kong, Peoples R China
[4] Kings Coll London, Div Engn, Dept Elect Engn, London WC2R 2LS, England
[5] Hong Kong Polytech Univ, Elect & Informat Engn Dept, Ctr Multimedia Signal Proc, Kowloon, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2008年 / 38卷 / 03期
关键词
load flow problem; modeling; mutation operation; neural network control; particle swarm optimization; wavelet theory;
D O I
10.1109/TSMCB.2008.921005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new hybrid particle swarm optimization (PSO) that incorporates a wavelet-theory-based mutation operation is proposed. It applies the wavelet theory to enhance the PSO in exploring the solution space more effectively for a better solution. A suite or benchmark test functions and three industrial applications (solving the load flow problems, modeling the development of fluid dispensing for electronic packaging, and designing a neural-network-based controller) are employed to evaluate the performance and the applicability of the proposed method. Experimental results empirically show that the proposed method significantly outperforms the existing methods in terms of convergence speed, solution quality, and solution stability.
引用
收藏
页码:743 / 763
页数:21
相关论文
共 46 条
[11]  
Eberhart R., 1995, MHS 95 P 6 INT S MIC, DOI DOI 10.1109/MHS.1995.494215
[12]  
Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279
[13]  
Eberhart RC., 2001, SWARM INTELL-US
[14]   A hybrid particle swarm optimization applied to loss power minimization [J].
Esmin, AAA ;
Lambert-Torres, G ;
de Souza, ACZ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :859-866
[15]   Self-adaptive fitness formulation for constrained optimization [J].
Farmani, R ;
Wright, JA .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (05) :445-455
[16]   A particle swarm optimization to identifying the ARMAX model for short-term load forecasting [J].
Huang, CM ;
Huang, CJ ;
Wang, ML .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :1126-1133
[17]   A Hybri of genetic algorithm and particle swarm optimization for recurrent network design [J].
Juang, CF .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (02) :997-1006
[18]  
Kuo BC, 2003, AUTOMATIC CONTROL SY
[19]  
Liang J. J., 2006, Natural Computing, V5, P83, DOI [10.1007/s11047-005-1625-y, 10.1007/s11047-005-1625-3]
[20]  
Liang JJ, 2005, 2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, P68