Non-Gaussian scenarios for the heat equation with singular initial conditions

被引:37
作者
Anh, VV
Loenenko, NN
机构
[1] Queensland Univ Technol, Ctr Stat Sci & Ind Math, Brisbane, Qld 4001, Australia
[2] Kiev State Univ, Dept Math, UA-252601 Kiev, Ukraine
基金
澳大利亚研究理事会;
关键词
heat equation; scaling limit; non-Gaussian initial condition; long-range dependence; Chebyshev-Hermite expansions; Laguerre expansions; non-Gaussian distributions;
D O I
10.1016/S0304-4149(99)00053-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Non-Gaussian limiting distributions of the rescaling solutions of the heat equation for non-Gaussian initial data with long-range dependence are discribed in terms of their multiple stochastic integral representations. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 114
页数:24
相关论文
共 57 条
[1]   STRATIFIED STRUCTURE OF THE UNIVERSE AND BURGERS-EQUATION - A PROBABILISTIC APPROACH [J].
ALBEVERIO, S ;
MOLCHANOV, SA ;
SURGAILIS, D .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (04) :457-484
[2]   Parabolic SPDEs driven by Poisson white noise [J].
Albeverio, S ;
Wu, JL ;
Zhang, TS .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 74 (01) :21-36
[3]  
ANH VV, 1999, J STAT PLANN INFEREN, V80
[4]  
[Anonymous], 1960, J MATH ANAL APPL, DOI DOI 10.1016/0022-247X(60)90020-2
[5]  
[Anonymous], 1944, TREATISE THEORY BESS
[6]  
[Anonymous], STAT DISTRIBUTIONS S
[7]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (02) :381-429
[8]   WHITE-NOISE DRIVEN PARABOLIC SPDES WITH MEASURABLE DRIFT [J].
BALLY, V ;
GYONGY, I ;
PARDOUX, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 120 (02) :484-510
[9]  
Barndorff-Nielsen O.E., 1997, Finance and Stochastics, V2, P41, DOI DOI 10.1007/S007800050032
[10]   AN EXPANSION FOR SOME 2ND-ORDER PROBABILITY DISTRIBUTIONS AND ITS APPLICATION TO NOISE PROBLEMS [J].
BARRETT, JF ;
LAMPARD, DG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1955, 1 (01) :10-15