Cortisol and ACTH response to oral dexamethasone in obesity and effects of sex, body fat distribution, and dexamethasone concentrations: A dose-response study

被引:118
作者
Pasquali, R
Ambrosi, B
Armanini, D
Cavagnini, F
Uberti, ED
del Rio, G
de Pergola, G
Maccario, M
Mantero, F
Marugo, M
Rotella, CM
Vettor, R
机构
[1] Osped S Orsola Malpighi, Dipartimento Med Interna, Endocrinol Unit, UO Endocrinol, I-40138 Bologna, Italy
[2] Univ Milan, Inst Endocrine Sci Inc, I-20100 Milan, Italy
[3] Univ Padua, Dept Med & Surg Sci, Endorcrinol Unit, I-35100 Padua, Italy
[4] Univ Milan, San Luca Hosp, IRCCS, Endocrinol Unit, I-20100 Milan, Italy
[5] Univ Ferrara, Endocrinol Sect, I-44100 Ferrara, Italy
[6] Univ Modena, Serv Endocrinol, I-41100 Modena, Italy
[7] Univ Bari, DETO, I-70100 Bari, Italy
[8] Univ Turin, Div Endocrinol, I-10100 Turin, Italy
[9] Galliera Hosp, I-15100 Genoa, Italy
[10] Univ Florence, Dept Clin Physiopathol, Endocrinol Sect, I-50100 Florence, Italy
[11] Univ Padua, Inst Med Semeiot, I-35100 Padua, Italy
关键词
D O I
10.1210/jc.87.1.166
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
There is increasing evidence that the abdominal obesity phenotype may be associated with multiple alterations of the hypothalamic-pituitary-adrenocortical (HPA) axis activity in both sexes. Our hypothesis is that the lack of adequate cortisol suppression after the dexamethasone test may constitute an indirect marker of HPA axis hyperactivity in the presence of the abdominal obesity phenotype. A total of 34 normal-weight (13 men and 21 women) and 87 obese (36 men and 51 women), healthy, nondepressed subjects therefore underwent four different dexamethasone suppression tests randomly performed at varying intervals of at least 1 wk between each test. After a standard overnight 1-mg dexamethasone test, which served as a reference, three other tests were randomly performed at 1-wk intervals by administering 0.0035, 0.0070, and 0.015 mg oral dexamethasone per kilogram of body weight overnight. Blood samples were obtained for cortisol, ACTH, and dexamethasone. Results were analyzed separately in men and women as well as in normal-weight [body mass index (BMI) less than or equal to25 kg/m(2)] and overweight or obese (BMI <25 kg/m(2)) subjects. The waist circumference and the waist to hip ratio (WHR) were used as markers of body fat distribution. After the standard 1-mg test, cortisol suppression was greater than 90% in all subjects. However, after each test, obese women had significantly higher values of percent cortisol and percent ACTH suppression than normal-weight women without any difference between obese and normal-weight men. Considering the response to the three variable-dose tests, a clear dose-reponse pattern (P < 0.001 for trend analysis) in percent cortisol and percent ACTH suppression was found in all subjects. After each test men had significantly higher dexamethasone levels than women, regardless of BMI. However, obese women, but not men, had significantly higher dexamethasone levels after each test than their normal-weight counterpart. Plasma dexamethasone concentrations were dose related (P < 0.001 for trend analysis) in all subjects, but the dose-related increase was significantly higher in normal-weight men than normal-weight women, whereas it was similar in obese subjects of both sexes. Stepwise multiple regression analysis revealed that both percent cortisol and percent ACTH variations were significantly and negatively influenced by dexamethasone levels, as well as by waist circumference values in men, and independently by BMI and waist circumference in women. However, in contrast to what has been found in men, a divergent contribution of BMI and waist circumference was found in women indicating that, with increasing waist values, a smaller suppression of the HPA axis was found with respect to that expected on the basis of BMI values. In conclusion, this study provides data of both physiological and physiopathological relevance. Overall, our data indicated that adjustment of the dexamethasone dose to body weight does not seem to substantially improve the sensitivity of the test, even in obese individuals, particularly when near-maximal doses are administered. However, this study demonstrated a highly significant effect of dexamethasone blood level concentrations on cortisol and ACTH suppression to low-dose dexamethasone tests. In addition, a significant effect of gender on postdexamethasone cortisol concentrations, suppression of the HPA axis, and dexamethasone levels were found, which may be dependent on related differences in both cortisol and dexamethasone metabolism. We showed that pituitary sensitivity to feedback inhibition by dexamethasone is preserved in obesity in both sexes even at low dosages. On the other hand, our data suggest that, at least in women, abdominal fat distribution may partially counteract the progressively greater suppressibility of the HPA axis that would be expected according to increasing BMI.
引用
收藏
页码:166 / 175
页数:10
相关论文
共 43 条
[1]  
Andrews RC, 1999, CLIN SCI, V96, P513, DOI 10.1042/cs0960513
[2]  
[Anonymous], 1990, BMDP STAT SOFTWARE M
[3]   Dexamethasone and 11-dehydrodexamethasone as tools to investigate the isozymes of 11 beta-hydroxysteroid dehydrogenase in vitro and in vivo [J].
Best, R ;
Nelson, SM ;
Walker, BR .
JOURNAL OF ENDOCRINOLOGY, 1997, 153 (01) :41-48
[4]  
Bjorntorp P, 1993, Obes Res, V1, P206
[5]   EFFECTS OF AGE AND GENDER ON PITUITARY-ADRENOCORTICAL RESPONSIVENESS IN HUMANS [J].
BORN, J ;
DITSCHUNEIT, I ;
SCHREIBER, M ;
DODT, C ;
FEHM, HL .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 1995, 132 (06) :705-711
[6]   THE HYPOTHALAMIC-PITUITARY-ADRENAL AXIS IN OBESITY [J].
CHALEW, S ;
NAGEL, H ;
SHORE, S .
OBESITY RESEARCH, 1995, 3 (04) :371-382
[7]   Brain corticosteroid receptor balance in health and disease [J].
De Kloet, ER ;
Vreugdenhil, E ;
Oitzl, MS ;
Joëls, M .
ENDOCRINE REVIEWS, 1998, 19 (03) :269-301
[8]  
FAVA GA, 1983, J CLIN PSYCHOL, V39, P249, DOI 10.1002/1097-4679(198303)39:2<249::AID-JCLP2270390218>3.0.CO
[9]  
2-Y
[10]   Corticotropin releasing hormone in the pathophysiology of melancholic and atypical depression and in the mechanism of action of antidepressant drugs [J].
Gold, PW ;
Licinio, J ;
Wong, ML ;
Chrousos, GP .
STRESS: BASIC MECHANISMS AND CLINICAL IMPLICATIONS, 1995, 771 :716-729