Large upper tropospheric ozone enhancements above midlatitude North America during summer:: In situ evidence from the IONS and MOZAIC ozone measurement network

被引:92
作者
Cooper, O. R.
Stohl, A.
Trainer, M.
Thompson, A. M.
Witte, J. C.
Oltmans, S. J.
Morris, G.
Pickering, K. E.
Crawford, J. H.
Chen, G.
Cohen, R. C.
Bertram, T. H.
Wooldridge, P.
Perring, A.
Brune, W. H.
Merrill, J.
Moody, J. L.
Tarasick, D.
Nedelec, P.
Forbes, G.
Newchurch, M. J.
Schmidlin, F. J.
Johnson, B. J.
Turquety, S.
Baughcum, S. L.
Ren, X.
Fehsenfeld, F. C.
Meagher, J. F.
Spichtinger, N.
Brown, C. C.
McKeen, S. A.
McDermid, I. S.
Leblanc, T.
机构
[1] NOAA, Earth Syst Res Lab, Div Chem Sci, Theoret Aeron Branch, Boulder, CO 80305 USA
[2] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
[3] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Boeing Co, Seattle, WA 98124 USA
[6] Meteorol Serv Canada, Sable Isl, NS B3J 2L4, Canada
[7] CALTECH, Jet Prop Lab, Wrightwood, CA 92397 USA
[8] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA
[9] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
[10] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA
[11] Observ Midi Pyrenees, Lab Aerol, CNRS, F-31400 Toulouse, France
[12] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35805 USA
[13] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA
[14] NASA, Goddard Space Flight Ctr, Wallops Isl, VA 23337 USA
[15] Tech Univ Munich, Dept Ecol, D-80333 Freising Weihenstephan, Germany
[16] Norwegian Inst Air Res, N-2027 Kjeller, Norway
[17] Environm Canada, Meteorol Serv Canada, Expt Studies Res Div, Toronto, ON M3H 5T4, Canada
[18] Univ Paris 06, Inst Pierre Simon Laplace, Serv Aeron, F-75005 Paris, France
[19] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20770 USA
关键词
D O I
10.1029/2006JD007306
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The most extensive set of free tropospheric ozone measurements ever compiled across midlatitude North America was measured with daily ozonesondes, commercial aircraft and a lidar at 14 sites during July-August 2004. The model estimated stratospheric ozone was subtracted from all profiles, leaving a tropospheric residual ozone. On average the upper troposphere above midlatitude eastern North America contained 15 ppbv more tropospheric residual ozone than the more polluted layer between the surface and 2 km above sea level. Lowest ozone values in the upper troposphere were found above the two upwind sites in California. The upper troposphere above midlatitude eastern North America contained 16 ppbv more tropospheric residual ozone than the upper troposphere above three upwind sites, with the greatest enhancement above Houston, Texas, at 24 ppbv. Upper tropospheric CO measurements above east Texas show no statistically significant enhancement compared to west coast measurements, arguing against a strong influence from fresh surface anthropogenic emissions to the upper troposphere above Texas where the ozone enhancement is greatest. Vertical mixing of ozone from the boundary layer to the upper troposphere can only account for 2 ppbv of the 16 ppbv ozone enhancement above eastern North America; therefore the remaining 14 ppbv must be the result of in situ ozone production. The transport of NOx tracers from North American anthropogenic, biogenic, biomass burning, and lightning emissions was simulated for the upper troposphere of North America with a particle dispersion model. Additional box model calculations suggest the 24 ppbv ozone enhancement above Houston can be produced over a 10 day period from oxidation reactions of lightning NOx and background mixing ratios of CO and CH4. Overall, we estimate that 69-84% (11-13 ppbv) of the 16 ppbv ozone enhancement above eastern North America is due to in situ ozone production from lightning NOx with the remainder due to transport of ozone from the surface or in situ ozone production from other sources of NOx.
引用
收藏
页数:19
相关论文
共 63 条
[1]   Estimating the NOx produced by lightning from GOME and NLDN data:: a case study in the Gulf of Mexico [J].
Beirle, S ;
Spichtinger, N ;
Stohl, A ;
Cummins, KL ;
Turner, T ;
Boccippio, D ;
Cooper, OR ;
Wenig, M ;
Grzegorski, M ;
Platt, U ;
Wagner, T .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :1075-1089
[2]  
Boccippio DJ, 2001, MON WEATHER REV, V129, P108, DOI 10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO
[3]  
2
[4]  
Brunner D., 2001, J GEOPHYS RES-ATMOS, V106, P27673
[5]  
CHAMEIDES WL, 1977, J ATMOS SCI, V34, P143, DOI 10.1175/1520-0469(1977)034<0143:NPIL>2.0.CO
[6]  
2
[7]   Global frequency and distribution of lightning as observed from space by the Optical Transient Detector [J].
Christian, HJ ;
Blakeslee, RJ ;
Boccippio, DJ ;
Boeck, WL ;
Buechler, DE ;
Driscoll, KT ;
Goodman, SJ ;
Hall, JM ;
Koshak, WJ ;
Mach, DM ;
Stewart, MF .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D1)
[8]   Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion [J].
Cleary, PA ;
Wooldridge, PJ ;
Cohen, RC .
APPLIED OPTICS, 2002, 41 (33) :6950-6956
[9]   Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-Tropics A and B [J].
Colman, JJ ;
Swanson, AL ;
Meinardi, S ;
Sive, BC ;
Blake, DR ;
Rowland, FS .
ANALYTICAL CHEMISTRY, 2001, 73 (15) :3723-3731
[10]   Direct transport of midlatitude stratospheric ozone into the lower troposphere and marine boundary layer of the tropical Pacific Ocean -: art. no. D23310 [J].
Cooper, OR ;
Stohl, A ;
Hübler, G ;
Hsie, EY ;
Parrish, DD ;
Tuck, AF ;
Kiladis, GN ;
Oltmans, SJ ;
Johnson, BJ ;
Shapiro, M ;
Moody, JL ;
Lefohn, AS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D23) :1-15