Gradient TiO2 Nanotube Arrays via Asymmetric Anodization

被引:9
作者
Li, Hui [1 ,2 ,3 ]
Zhang, Jie [2 ]
Cheng, Jian-Wen [2 ]
Chen, Zhen Hua [2 ,4 ]
Liang, Fengxia [2 ]
Tsang, Chun Kwan [2 ]
Cheng, Hua [2 ]
Zheng, Lingxia [2 ]
Lee, Shuit-Tong [2 ,4 ]
Li, Yang Yang [2 ,3 ,5 ]
机构
[1] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[3] USTC CityU Joint Adv Res Ctr, Suzhou, Jiangsu, Peoples R China
[4] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Hong Kong, Hong Kong, Peoples R China
[5] City Univ Hong Kong, Ctr Funct Photon, Hong Kong, Hong Kong, Peoples R China
关键词
ORGANIZED NANOPORE/NANOTUBE ARRAYS; NANOMATERIALS; INITIATION; GENERATE; SIZE;
D O I
10.1149/2.012201jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gradient self-organized TiO2 nanotube arrays with the tube diameters and length gradually changing along the sample plane are conveniently fabricated. The fabrication method is based on asymmetric anodization with the point cathode placed close to the edge of the titanium foil anode. Mechanism study reveals that the drastic variance in the voltage drop over the tube bottom at different locations along the film is responsible for the formation of the gradient morphology. Experimentally, moderate electrolyte conductivities and sufficiently high anodization voltages are necessary to enable the desired gradient TiO2 nanotube arrays. Moreover, the structural features of the fabricated gradient TiO2 nanotube arrays can be further adjusted by controlling the imperfection level of the titanium substrate. (C) 2012 The Electrochemical Society. All rights reserved.
引用
收藏
页码:M6 / M9
页数:4
相关论文
共 24 条
[1]   Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study [J].
Andersson, Olof ;
Larsson, Andreas ;
Ekblad, Tobias ;
Liedberg, Bo .
BIOMACROMOLECULES, 2009, 10 (01) :142-148
[2]   Transition from nanopores to nanotubes: Self-ordered anodic oxide structures on titanium-aluminides [J].
Berger, Steffen ;
Tsuchiya, Hiroaki ;
Schmuki, Patrik .
CHEMISTRY OF MATERIALS, 2008, 20 (10) :3245-3247
[3]   Initiation of Organized Nanopore/Nanotube Arrays in Titanium Oxide II. Nanopore Size and Spacing [J].
Bhargava, Yash V. ;
Nguyen, Que Anh S. ;
Devine, Thomas M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :E62-E68
[4]   Gradient nanostructures for interfacing microfluidics and nanofluidics [J].
Cao, H ;
Tegenfeldt, JO ;
Austin, RH ;
Chou, SY .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3058-3060
[5]   Nanostructured gradient-index antireflection diffractive optics [J].
Chang, Chih-Hao ;
Dominguez-Gaballero, Jose A. ;
Choi, Hyungryul J. ;
Barbastathis, George .
OPTICS LETTERS, 2011, 36 (12) :2354-2356
[6]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[7]  
Collins BE, 2002, ADV FUNCT MATER, V12, P187, DOI 10.1002/1616-3028(200203)12:3<187::AID-ADFM187>3.0.CO
[8]  
2-E
[9]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[10]   Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures [J].
Ghicov, Andrei ;
Schmuki, Patrik .
CHEMICAL COMMUNICATIONS, 2009, (20) :2791-2808