A numerical algorithm to find soft-constrained Nash equilibria in scalar LQ-games

被引:25
作者
Engwerda, J [1 ]
机构
[1] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
关键词
D O I
10.1080/00207170600565352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper provides a numerical algorithm to calculate all soft-constrained Nash equilibria in a regular scalar indefinite linear-quadratic game. The algorithm is based on the calculation of the eigenstructure of a certain matrix. The analysis follows the lines of the approach taken by Engwerda (2003) to calculate the solutions of a set of scalar coupled feedback Nash algebraic Riccati equations.
引用
收藏
页码:592 / 603
页数:12
相关论文
共 20 条
[1]  
BASAR T, 1995, H INFINITELY OPTIMAL
[2]  
Basar T., 1998, Dynamic noncooperative game theory
[3]  
BASAR T, 2003, MODELING CONTROL EC, P1
[4]   Solving the scalar feedback Nash algebraic Riccati equations: An eigenvector approach [J].
Engwerda, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (05) :847-852
[5]   The solution set of the N-player scalar feedback Nash algebraic Riccati equations [J].
Engwerda, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) :2363-2368
[6]  
Francis B.A., 1987, Lecture Notes in Control and Information Sciences, V88
[7]   Robust permanent income and pricing [J].
Hansen, LP ;
Sargent, TJ ;
Tallarini, TD .
REVIEW OF ECONOMIC STUDIES, 1999, 66 (04) :873-907
[8]   SOLUTION OF OPTIMAL LINEAR CONTROL PROBLEMS UNDER CONFLICT OF INTEREST [J].
KRIKELIS, NJ ;
REKASIUS, ZV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) :140-&
[9]  
Kun G., 2001, THESIS RWTH AACHEN G
[10]  
Lancaster P., 1995, Algebraic riccati equations