Building Neuromorphic Circuits with Memristive Devices

被引:87
作者
Chang, Ting [1 ]
Yang, Yuchao [1 ]
Lu, Wei [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
NEURAL-NETWORKS; MEMORY; MODEL; MECHANISM; SYNAPSE; SYNCHRONIZATION; FACILITATION; RESISTANCE; CONDUCTION; NEURONS;
D O I
10.1109/MCAS.2013.2256260
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid, exponential growth of modern electronics has brought about profound changes to our daily lives. However, maintaining the growth trend now faces significant challenges at both the fundamental and practical levels [1]. Possible solutions include More Moore?developing new, alternative device structures and materials while maintaining the same basic computer architecture, and More Than Moore?enabling alternative computing architectures and hybrid integration to achieve increased system functionality without trying to push the devices beyond limits. In particular, an increasing number of computing tasks today are related to handling large amounts of data, e.g. image processing as an example. Conventional von Neumann digital computers, with separate memory and processer units, become less and less efficient when large amount of data have to be moved around and processed quickly. Alternative approaches such as bio-inspired neuromorphic circuits, with distributed computing and localized storage in networks, become attractive options [2]?[6]. © 2001-2012 IEEE.
引用
收藏
页码:56 / 73
页数:18
相关论文
共 82 条
[1]   An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Guerin, David ;
Novembre, Christophe ;
Lenfant, Stephane ;
Lmimouni, Kamal ;
Gamrat, Christian ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) :330-337
[2]  
[Anonymous], P 2010 IEEE INT EL D
[3]  
[Anonymous], P 2011 IEEE INT EL D
[4]  
[Anonymous], 1941, Conditioned reflexes and psychiatry
[5]  
[Anonymous], SYNAPSES
[6]  
Atluri PP, 1996, J NEUROSCI, V16, P5661
[7]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[8]  
Biolek Z, 2009, RADIOENGINEERING, V18, P210
[9]   Occurrence of Both Unipolar Memory and Threshold Resistance Switching in a NiO Film [J].
Chang, S. H. ;
Lee, J. S. ;
Chae, S. C. ;
Lee, S. B. ;
Liu, C. ;
Kahng, B. ;
Kim, D. -W. ;
Noh, T. W. .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[10]   Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor [J].
Chang, Ting ;
Jo, Sung-Hyun ;
Lu, Wei .
ACS NANO, 2011, 5 (09) :7669-7676