Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor

被引:891
作者
Chang, Ting [1 ]
Jo, Sung-Hyun [1 ]
Lu, Wei [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
memristor; memory; retention; training; transition; neuromorphic system; synapse; STRETCHED-EXPONENTIAL RELAXATION; TIME-COURSE; FACILITATION; NEUROSCIENCE; RESISTANCE; STORAGE;
D O I
10.1021/nn202983n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
"Memory" is an essential building block in learning and decision-making, in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always as disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time Interval between stimulation pulses (i.e., the stimulation rate) plays a, crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories.
引用
收藏
页码:7669 / 7676
页数:8
相关论文
共 42 条
[1]   An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Guerin, David ;
Novembre, Christophe ;
Lenfant, Stephane ;
Lmimouni, Kamal ;
Gamrat, Christian ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) :330-337
[2]  
Atluri PP, 1996, J NEUROSCI, V16, P5661
[3]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[4]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[5]   Electric-Field-Induced Resistive Switching in a Family of Mott Insulators: Towards a New Class of RRAM Memories [J].
Cario, Laurent ;
Vaju, Cristian ;
Corraze, Benoit ;
Guiot, Vincent ;
Janod, Etienne .
ADVANCED MATERIALS, 2010, 22 (45) :5193-+
[6]   Synaptic behaviors and modeling of a metal oxide memristive device [J].
Chang, Ting ;
Jo, Sung-Hyun ;
Kim, Kuk-Hwan ;
Sheridan, Patrick ;
Gaba, Siddharth ;
Lu, Wei .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (04) :857-863
[7]   Resistance switching memories are memristors [J].
Chua, Leon .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (04) :765-783
[8]   MEMRISTIVE DEVICES AND SYSTEMS [J].
CHUA, LO ;
KANG, SM .
PROCEEDINGS OF THE IEEE, 1976, 64 (02) :209-223
[9]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+
[10]   The neurobiology of consolidations, or, how stable is the engram? [J].
Dudai, Y .
ANNUAL REVIEW OF PSYCHOLOGY, 2004, 55 :51-86