Jumping translocation of 17q11∼qter and 3q25∼q28 duplication in a variant Philadelphia t(9;14;22)(q34;q32;q11) in a childhood chronic myelogenous leukemia

被引:7
作者
Haltrich, I
Kost-Alimova, M
Kovács, G
Kriván, G
Tamáska, J
Klein, G
Fekete, G
Imreh, S
机构
[1] Karolinska Inst, Ctr Microbiol & Tumor Biol, S-17177 Stockholm, Sweden
[2] Semmelweis Univ, Fac Med, Dept Pediat 2, H-1085 Budapest, Hungary
[3] Natl Med Ctr, Inst Hematol & Immunol, Lab Hematopathol, Budapest, Hungary
关键词
D O I
10.1016/j.cancergencyto.2005.06.019
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The virtually obligatory presence of the Philadelphia chromosome may suggest a causal homogeneity, but chronic myelogenous leukemia (CML) is a clinically heterogeneous disease. This may be a consequence of the variable BCR breakpoints on chromosome 22 and of nonrandom secondary chromosomal abnormalities. We present the case of a boy, age 12, investigated in blastic phase of CML. Karyotyping with conventional and multiplex fluorescence in situ hybridization (FISH and M-FISH) karyotyping, complemented with reverse transcriptase-polymerase chain reaction, identified a variant Philadelphia translocation t(9;14;22)(q34;q32;q11) involving a cryptic BCR/ABL fusion with formation of the P190(Bcr-Abl) oncoprotein. M-FISH revealed also an unbalanced jumping translocation of 17q11 similar to qter alternatively present on chromosomes 14 or 20, apparently hithertofore unreported in hematological malignancies. Another secondary aberration, dup(3)(q25q28), was revealed by multipoint interphase FISH (mpl-FISH). Gain of this region is known in adult hematological malignancies and solid tumors, suggesting its general involvement in tumor initiation or progression (or both), regardless of tissue origin. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 32 条
[11]   Cytogenetic and molecular genetic evolution of chronic myeloid leukemia [J].
Johansson, B ;
Fioretos, T ;
Mitelman, F .
ACTA HAEMATOLOGICA, 2002, 107 (02) :76-94
[12]   Analysis of chromosomal imbalances in de novo CD5-positive diffuse large-B-cell lymphoma detected by comparative genomic hybridization [J].
Karnan, S ;
Tagawa, H ;
Suzuki, R ;
Suguro, M ;
Yamaguchi, M ;
Okamoto, M ;
Morishima, Y ;
Nakamura, S ;
Seto, M .
GENES CHROMOSOMES & CANCER, 2004, 39 (01) :77-81
[13]  
LEJEUNE J, 1979, ANN GENET-PARIS, V22, P210
[14]   Molecular demonstration of BCR/ABL fusion in two cases with chronic myeloproliferative disorder carrying variant Philadelphia t(14;22)(q32;q11) [J].
Mantzourani, M ;
Stamatopoulos, K ;
Abazis, D ;
Kontopidou, F ;
Viniou, N ;
Pangalis, GA ;
Pangalos, C ;
Loukopoulos, D .
CANCER GENETICS AND CYTOGENETICS, 1996, 91 (01) :82-87
[15]   DETECTION OF CHIMERIC BCR-ABL GENES IN ACUTE LYMPHOBLASTIC-LEUKEMIA BY THE POLYMERASE CHAIN-REACTION [J].
MAURER, J ;
JANSSEN, JWG ;
THIEL, E ;
VANDENDEREN, J ;
LUDWIG, WD ;
AYDEMIR, U ;
HEINZE, B ;
FONATSCH, C ;
HARBOTT, J ;
REITER, A ;
RIEHM, H ;
HOELZER, D ;
BARTRAM, CR .
LANCET, 1991, 337 (8749) :1055-1058
[16]  
Mitelman F., 1995, ISCN 1995 INT SYSTEM
[17]  
MITELMAN F, 2004, MITELMAN DATABASE CH
[18]  
Monni O, 1998, GENE CHROMOSOME CANC, V21, P298, DOI 10.1002/(SICI)1098-2264(199804)21:4<298::AID-GCC3>3.0.CO
[19]  
2-U
[20]   Myeloid antigen positive acute lymphoblastic leukemia with the Philadelphia translocation and a jumping translocation of 1q in a child [J].
Montgomery, KD ;
Winter, SS ;
Frost, JD ;
Hardekopf, D ;
Holt, K ;
Graham, M ;
Foucar, K .
LEUKEMIA, 2004, 18 (09) :1548-1550