Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning

被引:277
作者
Huang, ZM [1 ]
He, CL
Yang, AZ
Zhang, YZ
Hang, XJ
Yin, JL
Wu, QS
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
[2] Natl Univ Singapore, Div Bioengn, Singapore 117576, Singapore
[3] Tongji Univ, Shanghai Key Lab Dev & Applicat Met Funct Mat, Shanghai 200092, Peoples R China
[4] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
关键词
co-axial electrospinning; double-layered nanofibers; drug encapsulation; mechanical performance; degradation; drug release;
D O I
10.1002/jbm.a.30564
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This article describes an electrospinning process to fabricate double-layered ultrafine fibers. A bioabsorbable polymer, Polycaprolactone (PCL), was used as the outer layer or the shell and two medically pure drugs, Resveratrol (RT, a kind of antioxidant) and Gentamycin Sulfate (GS, an antibiotic), were used as the inner layers or the cores. Morphology and microstructure of the ultrafine fibers were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM), whereas mechanical performance of them was understood through tensile test. In vitro degradation rates of the nanofibrous membranes were determined by measuring their height loss when immersed in pH 7.4 phosphate-buffered saline (PBS) mixed with certain amount of Pseudomonas lipase for a maximum of 7 days. The drug release behaviors of the RT and GS were measured using a high performance liquid chromatography (HPLC) and ultraviolet-visible (UV-vis) spectroscopy, respectively. It has been found that the drug solutions without any fiber-forming additive could be encapsulated in the PCL ultrafine fibers, although they alone cannot be made into a fiber form. Beads on the fiber surface influenced the tensile behavior of the ultrafine fibers remarkably. When the core solvent was miscible with the shell solvent, higher drug concentration decreased the bead formation and thus favored the mechanical performance. The situation, however, became different if the two solvents were immiscible with each other. The degradation rate was closely related to hydrophilicity of the drugs in the cores. Higher hydrophilicity apparently led to faster degradation. The release profiles of the RT and GS exhibited a sustained release characteristic, with no burst release phenomenon. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 32 条
[1]  
Bergshoef MM, 1999, ADV MATER, V11, P1362, DOI 10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO
[2]  
2-X
[3]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[4]   Beaded nanofibers formed during electrospinning [J].
Fong, H ;
Chun, I ;
Reneker, DH .
POLYMER, 1999, 40 (16) :4585-4592
[5]  
Formhals A, 1934, United States patent US, Patent No. 1975504
[6]   Enzymatic degradation of poly(epsilon-caprolactone) film in phosphate buffer solution containing lipases [J].
Gan, ZH ;
Liang, QZ ;
Zhang, J ;
Jing, XB .
POLYMER DEGRADATION AND STABILITY, 1997, 56 (02) :209-213
[7]   A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].
Huang, ZM ;
Zhang, YZ ;
Kotaki, M ;
Ramakrishna, S .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (15) :2223-2253
[8]   Electrospinning and mechanical characterization of gelatin nanofibers [J].
Huang, ZM ;
Zhang, YZ ;
Ramakrishna, S ;
Lim, CT .
POLYMER, 2004, 45 (15) :5361-5368
[9]   Biodegradable electrospun fibers for drug delivery [J].
Jing, Z ;
Xu, XY ;
Chen, XS ;
Liang, QZ ;
Bian, XC ;
Yang, LX ;
Jing, XB .
JOURNAL OF CONTROLLED RELEASE, 2003, 92 (03) :227-231
[10]   Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters [J].
Katti, DS ;
Robinson, KW ;
Ko, FK ;
Laurencin, CT .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 70B (02) :286-296