Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras

被引:70
作者
Gowda, MS [1 ]
Sznajder, R
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Bowie State Univ, Dept Math, Bowie, MD 20715 USA
关键词
Euclidean Jordan algebra; automorphism; P-property; globally uniquely solvable property; complementarity problem; super and ultra P-properties;
D O I
10.1287/moor.1050.0182
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Generalizing the P-property of a matrix, Gowda et al. [Gowda, M. S., R. Sznajder, J. Tao. 2004. Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393 203-232] recently introduced and studied P- and globally uniquely solvable (GUS)-properties for linear transformations defined on Euclidean Jordan algebras. In this paper, we study the invariance of these properties under automorphisms of the algebra and of the symmetric cone. By means of these automorphisms and the concept of a principal subtransformation, we introduce and study ultra and super P-(GUS)-properties for a linear transformation on a Euclidean Jordan algebra.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 18 条
[1]   ALGEBRAIC PERRON-FROBENIUS THEORY [J].
BARKER, GP ;
SCHNEIDER, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 11 (03) :219-233
[2]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[3]  
Cottle R, 1992, The Linear Complementarity Problem
[4]  
Facchinei F, 2003, Finite-Dimensional Variational Inequalities and Complementary Problems, VII
[5]  
Faraut J., 1994, Analysis on symmetric cones
[6]   On semidefinite linear complementarity problems [J].
Gowda, MS ;
Song, Y .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :575-587
[7]   Some P-properties for linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R ;
Tao, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :203-232
[8]   On some interconnections between strict monotonicity, globally uniquely solvable, and P properties in semidefinite linear complementarity problems [J].
Gowda, MS ;
Song, Y ;
Ravindran, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 :355-368
[9]   ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES [J].
HILL, RD ;
WATERS, SR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :81-88
[10]  
KOECHER M, 1999, LECT NOTES MATH, V1710