Some P-properties for linear transformations on Euclidean Jordan algebras

被引:190
作者
Gowda, MS [1 ]
Sznajder, R
Tao, J
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Bowie State Univ, Dept Math, Bowie, MD 20715 USA
关键词
D O I
10.1016/j.laa.2004.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A real square matrix is said to be a P-matrix if all its principal minors are positive. It is well known that this property is equivalent to: the nonsign-reversal property based on the componentwise product of vectors, the order P-property based on the minimum and maximum of vectors, uniqueness property in the standard linear complementarity problem, (Lipschitzian) homeomorphism property of the normal map corresponding to the nonnegative orthant. In this article, we extend these notions to a linear transformation defined on a Euclidean Jordan algebra. We study some interconnections between these extended concepts and specialize them to the space S-n of all n x n real symmetric matrices with the semidefinite cone S-+(n) and to the space R-n with the Lorentz cone. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:203 / 232
页数:30
相关论文
共 33 条
[1]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[2]   THE LINEAR ORDER COMPLEMENTARITY-PROBLEM [J].
BORWEIN, JM ;
DEMPSTER, MAH .
MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (03) :534-558
[3]  
Cottle R, 1992, The Linear Complementarity Problem
[4]  
Facchinei F, 2003, Finite-Dimensional Variational Inequalities and Complementary Problems, VII
[5]  
Faraut J., 1994, Analysis on symmetric cones
[6]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[7]   Euclidean Jordan algebras and interior-point algorithms [J].
Faybusovich, L .
POSITIVITY, 1997, 1 (04) :331-357
[8]  
Fiedler M., 1962, CZECH MATH J, V12, P382, DOI [10.21136/CMJ.1962.100526, DOI 10.21136/CMJ.1962.100526]
[9]  
Fukushima M, 2001, SIAM J OPTIMIZ, V12, P436
[10]  
Gale D., 1965, MATH ANN, V159, P81